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In recent decades, separation of stable isotopes due to their substantial role in human health has been
widely increased. The present research deals with square cascades optimization in order to separate
the 123Te by the Gray Wolf Optimization algorithm (GWO). The separation of 123Te has significant appli-
cation in medical science, and production of radioisotopes. In this study, attempts have been made to find
the desired concentration of product (99.9%) for a given amount of natural Tellurium feed within four
connected cascades. In this analysis, instead of solving nonlinear equations of concentration distribution
in cascades, two different artificial neural networks (ANN) are trained to predict the objective functions.
Two test cases for 123Te separation with different objective functions have been considered. The aim is to
gain the maximum product from a specified amount of feed in different configurations. In the first case,
the neural network has 20 inputs and considers four connected cascades. To train the network, 5000 ran-
domly generated data from the results is used. In the second case, the network has 22 inputs and 10,000
random data is used. In both cases, the Levenberg-Marquardt algorithm with 40 hidden layers is selected
to train the networks. Prediction of the objective functions using a neural network leads to a 98% reduc-
tion in execution time and significantly improves the speed of the optimization process. Using this
method, the optimal cascades for separation of 123Te with 99.9% concentration from 15 kg of natural
Tellurium during a year are introduced.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Today, the efficient methods for extracting the stable isotopes
from natural resources is under development. The stable isotopes
are widely used in medical sciences. One of the efficient methods
for separation of stable isotopes is the use of Gas Centrifuge (GC)
cascades (Zeng and Ying, 2000a). Tellurium consists of eight stable
isotopes with different applications. For example, 123Te is used in
123I radioisotope production, which can be applied in life science
for healthcare, medical applications, imaging and pharmaceuticals
industries (Smirnov and Sulaberidze, 2014). Taper and square cas-
cades can be used to separate multicomponent isotopes by GCs. In
taper cascades, using R, Q and Quasi ideal models, a cascade can be
designed that is used to separate a special isotope (Zeng et al.,
2011). This cascade cannot be used to separate other isotopes,
unless redesign the cascade structure. Therefore, it is not econom-
ically feasible to design a separation cascade capable of separating
the isotopes, individually. Accordingly, the design and construction
of cascades in commercial applications is going to the direction
that separation of a wide range of stable isotopes would be possi-
ble by a single cascade. Nowadays, square cascades are used for
this purpose (Zeng et al., 2014). Due to the recycle flows in the first
and last stages, square cascades can be used in low-feed flow rates
and different cuts, which have a high flexibility in operation and
can be adjusted by the control valves between the stages of the
cascade. Separation of isotopes using a square cascade is associated
with great complexity. Determination of optimum parameters to
reach the desired concentration is not easy. For example, for a
square cascade, the effective parameters are the cascade feed flow
rate, feed location, cascade cut, feed flow of GCs and cut of the first
stage. Changing the parameters, different concentrations of the
desired isotope can be obtained. It is not possible to reach a defi-
nite theoretical solution method to determine the optimal process
for separating of each isotopes regarding the effective parameters,
but optimization algorithms can be used to attain the desired goal
(Ying and Zeng, 2015).

In this paper, the enrichment of 123Te (middle isotope of the Tel-
lurium) has been investigated using square cascades of GCs. To
obtain the best-connected square cascades, the process parame-
ters, which include cascade feed flow rate, feed location, cascade
cut, feed flow of GCs and cut of the first stage have been studied
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Nomenclature

C Concentration
C

0
Product concentration

C
0 0 Waste concentration

Feed Feed flow rate of cascade
F External feed flow of each stage
L Feed flow
L
0

Product flow
L
0 0 Waste flow
M Molecular weight
N Number of stages
Product Amount of desired isotope produced in 1 year
P External product flow of each stage
f GC Feed flow rate of gas centrifuge

W External waste flow of each stage

Greek characters
h Interstage Cut
h1 The cut of the first stage
a Unit separation factor
e Recycle flow

Subscripts and superscripts
i Isotope number
n Stage number
cas Cascade
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(see Fig. 1). The optimization of the parameters is carried out by a
meta-heuristic algorithm. The optimization process in order to
enrich the product stream from a certain feed material has been
done by the GWO algorithm based on ANN. ANNs are computa-
tional models which copy the human brain’s learning and
decision-making abilities. They are created to undergo a learning
process before they are used, (Sahin and Koyuncu, 2012). Several
fundamental aspects effect on their decision-making ability and
correctness of the decisions such as the network structure, type
of activation functions in the neurons, learning period, and number
of neurons used during the learning process. The ANN is a well-
established tool for different forecasting problems in different
areas, with over 40 years of application (Naserbegi et al., 2020b).
Because of their universal approximate functional form, ANN
seems to be a good choice for modeling non-linear dependency
(Mahmoudi and Aghaie, 2019).

In optimization problems, the correct definition of objective
function is significant (Aghaie and Mahmoudi, 2016). The objective
functions have so far been studied, are separation capacity, total
feed flows (Sulaberidze et al., 2018), total number of GCs (Palkin,
2014), D parameter along with total interstage flow rates
(Mansourzadeh et al., 2018), amount of product (Imani et al.,
2020), and the desired isotope concentration along with total inter-
stage flows (Palkin, 2013). In this study, using GWO-ANN, two test
cases are evaluated. In first test case, attempts have been made to
maximize the amount of product for a given amount of natural Tel-
lurium in a fixed configuration. In second case, the total number of
the GCs are also minimized. The ANNs with lower time consump-
tion and proper accuracy are used for objective functions evalua-
Fig. 1. Schematic diagram of a separa
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tions. Finally, the optimized parameters are reported and results
are discussed.
2. Simulation of square cascades

In a square cascade, GCs are connected in parallel and in series.
The number of GCs is equal in all stages; i.e., the internal feed flow
rates in all stages are same. Another feature of square cascades is
the use of recycle flows in the first and last stages of the cascade
(see Fig. 2). Square cascade analysis can, generally, be divided into
two parts; (1) calculation of interstage flow rates, and (2) calcula-
tion of concentration distribution. In the first step, using the equa-
tions obtained from the total mass balance at each stage and
mixing points, all flow rates between the steps will be calculated.
In the second step, by solving the mass conservation equations
for each component in stages and mixing points, the concentration
distribution along the cascade will be calculated.
2.1. Calculation of interstage flows

The external hydraulic parameters of cascade are introduced as
cascade feed flow (Fn), waste flow (Wn) and product flow (Pn). The
internal hydraulic parameters of cascade are product flow of stages

(L
0
n), waste flow of stages (L

0 0
n) and interstage cut (hn) (Zeng and

Ying, 2002).
Another internal hydraulic parameter is feed to the stages (LnÞ.

By placing the following equations in a linear equation system, the
tion path and a square cascade.



Fig. 2. Schematic of a square cascade.

Fig. 3. Schematic diagram of inputs and outputs for two ANNs used in GWO algorithm.
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Fig. 4. GWO-ANN optimization algorithm.

Table 1
Natural concentration of Tellurium isotopes.

130Te 128Te 126Te 125Te 124Te 123Te 122Te 120Te

0.3416 0.3170 0.1880 0.0707 0.0474 0.0089 0.0255 0.0009
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hydraulic parameters are calculated (L
0 0
n; L

0
n; hn) (Zeng et al., 2003;

Zeng and Ying, 2000b).

Ln � L
0
n � L

0 0
n � Pn �Wn ¼ 0 ð1Þ

Ln ¼ L0n�1 � L
0 0
nþ1 þ Fn ð2Þ

hn ¼ L
0
n

Ln
ð3Þ

hcas ¼ P
F

ð4Þ

W þ e ¼ L
0 0
1 ð5Þ

P þ e0 ¼ L
0
N ð6Þ
4

2.2. Simulation of concentration distribution in the cascade

The mass conservation equation for isotope i in step n is written
as follows (Zeng and Ying, 2001):

LnCi;n � L
0 0
nþWn

� �
C

0 0
i;n � L

0
n þ Pn

� �
C

0
i;n ¼ 0 ð7Þ

Similarly, for mixing points, the mass conservation equation for
isotope i is obtained as Eq. (8).

L
0 0
nþ1

� �
C

0 0
i;nþ1 þ L

0
n�1

� �
C

0
i;n�1 þ FnC

F
i;n ¼ LnCi;n ð8Þ

In Eqs. (7) and (8), C
0
i;nis the i isotope concentration in the pro-

duct stream, and C
0 0
i;nrepresents the i isotope concentration in the

waste stream. Another relation used is the step separation factor
is as Eq. (9) (Zeng and Ying, 2001).

C
0
i;n=C

0 0
i;n

C
0
j;n=C

0 0
j;n

¼ aMj�Mi
0 ð9Þ

In addition to the relationships mentioned above, the following
conditions should be calculated in the feed and withdrawal flows
of each stage.X
i

Ci;n ¼ 1
X
i

C
0
i;n ¼ 1

X
i

C
0 0
i;n ¼ 1 ð10Þ

It is clear, the number of unknown flows in the cascade is fewer
than the equations. It is necessary to specify two parameters, so
the number of the unknowns and the equations will be equal. In
this paper, these two parameters are the cascade cut and the cut
of the first stage. Using Equations (7) and (8), the following equa-
tion is obtained:

�L
0
n� 1C

0
i;n� 1þ L

0
n þ Pn

� �
C

0
i;n þ L

0 0
n þWn

� �
C

0 0
i;n � L

0 0
n

þ 1C
0 0
i;nþ 1 ¼ FcC

F
i;n: ð11Þ

In Eq. (11), the known values are of the right side of the equa-
tion, and the values of the unknown concentrations are of the left
side. The coefficients can be named and the relation can be written
in the following simplified form.

�ui;n�1C
0
i;n�1 þxi;nC

0
i;n þ di;nC

0 0
i;n � ci;nþ1C

0 0
i;nþ1 ¼ ri;n ð12Þ

To solve the above equation in each time interval, the q iteration
method is used (Zeng and Ying, 2000c). In this method, a parame-
ter called q is defined, which is equal to the ratio of one isotope
concentration in the enriched stream to the concentration of the
same isotope in the prepared stream.

q ¼ C 0
i=C

00
i ð13Þ

By applying this definition to the separation factor relation, the
following relation will be obtained.

C0
i;n=C

00
i;n

C 0
j;n=C

00
j;n

¼ qi;n

qj;n
¼ aMj�Mi

0 ð14Þ

qi;n ¼ qj;na
Mj�Mi
0 ð15Þ

Using Eq. (15), the value of concentration C
0
i;ncan be determined

as follows:

C
0
i;n ¼ C

0 0
i;nqi;n ¼ C

0 0
i;nqj;na

Mj�Mi
0 ð16Þ

By placing the above relation to the left side of Eq. (12), the fol-
lowing relation is obtained (Zeng and Ying, 2001):

�ui;n�1qi;n�1C
0 0
i;n�1 þxi;nqi;nC

0 0
i;n þ di;nC

0 0
i;n � ci;nþ1C

0 0
i;nþ1 ¼ ri;n ð17Þ



Fig. 5. The neural network training regression for the neural network 1.

Fig. 6. The neural network training regression for the neural network 2.
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Fig. 7. The real and predicted values for 30 random samples A) ANN1 B) ANN2.

Table 2
The error values for both networks.

MAE RMSE MAPE

ANN 1 0.57 1.03 2.7%
ANN 2 0.26 0.33 1.7%

Table 3
The average calculation time for a single run, 10 repeated tests (four cascades).

Used network NN 1 NN 2

Time (s) 0.00124 0.00928
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The above equation must be solved at each step for each isotope
to calculate the concentration of all components.

2.3. Determining the connection flow between cascades

In separation of middle isotopes, it is not possible to reach high
concentrations in one separation step. In addition, in the presence
of a long separation cascade, the concentration of isotopes in light
or heavy sides of the cascade is limited to specific values. These
values are calculated according to the following equations (Zeng
and Ying, 2000a).

Cmax
P;k ¼ CF;kPk

i¼1CF;i

ð18Þ

Cmax
W;k ¼

CF;kPN
i¼kCF;i

ð19Þ
6

Using these relationships, the appropriate withdrawal of cas-
cade for separation of the target isotope can be determined. Col-
lecting the product of the first step (cascade) as the feed of the
next step, the same procedure can be done for the second step
and the separation map can be determined until the final concen-
tration is reached. In this paper, four cascades are connected as
Fig. 1 shows. The equations (18) and (19) can be used for approving
the selected separation path.

3. Optimization method

3.1. Objective functions

In square cascade design, there are five types of parameters that
can be optimized, including feed location, feed flow rate, cut of the
first stage, cascade cut, and feed flow of GCs. Square cascade can be
used in low feed flowrate and the wide range of cut; so, the perfor-
mance of the square cascade is high. Also, it has high flexibility in
separating isotopes. In this research, four square cascades are con-
nected for 123Te separation. So, there are many parameters that
need to be optimize simultaneously. In this article, two test cases
are evaluated. In the first case, the cascade arrangement is fixed
and in the second one, the number of stages and GCs added to
the optimization parameters. In both cases attempts have been
made to maximize the amount of product (123Te 99.9%) for a given
amount of natural Tellurium. The objective functions specified for
these two cases are as follows:

OF1 ¼ minðk1 1
Product

þ k2 Ci;calc � Ci;De

�� ��Þ ð20aÞ



Table 4
The GWO-ANN results for 123Te separation (first test case).

parameter Run number

1 2 3 4 5 6 7 8

NF1 39 37 37 39 39 37 39 37
Feed1 0.51 0.54 0.74 0.53 0.52 0.52 0.53 0.61
h11 0.36 0.40 0.41 0.37 0.37 0.36 0.35 0.38
f GC1 2.01 1.76 2.42 1.00 1.00 1.67 1.00 1.32
hcas1 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
NF2 38 37 27 29 29 33 29 32
Feed2 0.79 0.30 0.31 0.36 0.43 0.50 1.06 0.66
h12 0.39 0.52 0.54 0.55 0.53 0.50 0.55 0.54
f GC2 1.19 1.02 1.85 1.31 2.26 1.00 1.31 1.91
hcas2 0.60 0.59 0.57 0.54 0.55 0.63 0.61 0.59
NF3 2 5 2 2 2 3 2 3
Feed3 0.30 0.40 0.30 0.37 0.36 0.32 0.37 0.35
h13 0.41 0.55 0.49 0.52 0.52 0.50 0.52 0.52
f GC3 1.00 1.00 1.00 1.00 1.18 1.02 1.00 1.00
hcas3 0.18 0.14 0.15 0.11 0.14 0.12 0.14 0.14
NF4 35 36 35 39 37 38 39 37
Feed4 0.30 0.32 0.30 0.30 0.36 0.34 0.30 0.33
h14 0.54 0.53 0.51 0.49 0.48 0.55 0.49 0.46
f GC4 1.24 1.71 1.11 1.00 1.37 1.97 1.00 1.03
hcas4 0.11 0.10 0.11 0.12 0.10 0.08 0.12 0.13
Concentration 0.9990 0.9990 0.999 0.9991 0.9992 0.9992 0.9991 0.9990
Product (gr/year) 46.9 42.8 42.2 41.31 44.0 42.00 41.31 39.9
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OF2¼min k1
1

Product
þk2 Ci;calc�Ci;De

�� ��þN�NumberofGCsinastage
� �

ð20bÞ
In the two objective functions, the value of the final concentra-

tion Ci is applied as a constraint. The De index represents the
desired value of the parameter (concentration) and the calc index
represents the values calculated from the simulation. Also, the k1
is equal to 100, and k2 is equal to 10000. These are weighing fac-
tors. In the first objective function, the aim is to gain the maximum
product from a specified amount of feed by a specific arrangement
of GCs. In the second one, the aim is to gain the maximum product
from a specified amount of feed by minimizing the total number of
GCs. In these cases, the base septation factors are different and
their effects are studied.

3.2. Gray Wolf optimization algorithm

In this work, to optimize the square cascades, the Gray Wolf
meta-heuristic algorithm is used. The Gray Wolf algorithm was
proposed by Mirjalili et al., in 2014 based on their group hunting
(Mirjalili et al., 2014). The method of hunting gray wolves is math-
ematically modeled and the best solution is called alpha, the sec-
ond optimal solution is beta, and the third optimal solution is
called delta; the rest of the answers that do not matter are called
omega (Naserbegi et al., 2020b). The hunting process is monitored
by the alpha, beta and delta wolves. Omega wolves are looking for
alpha, beta, and delta wolves. Gray wolves basically follow three
stages of hunting. The first stage is tracking and chasing the prey,
the second stage is immobilizing the prey by encircling it, and
the third stage to attack the prey. The second stage is introduced
by Equations (21) and (22) (Nadimi-Shahraki et al., 2021):

D
!¼ C

!
: Xp
�!ðtÞ � Xp

�!ðtÞ
��� ��� ð21Þ

Xðtþ 1Þ�����! ¼ Xp
�!

tð Þ � A
!
:D
! ð22Þ

Where A
!

and C
!

denote the coefficient vectors, Xp
�!

and X
!

are the

prey and the gray wolf’s position, respectively, and the D
!

determi-
nes the new position of the wolves. In addition, the parameter t rep-
7

resents the number of iterative loops, and Xðtþ 1Þ�����!
indicates the

position of the wolves in the next iteration. A
!

and C
!

vectors are
defined in the following equations (Mirjalili et al., 2014):

A
!¼ 2 a!:r1

!� a! ð23Þ

C
!¼ 2r2

! ð24Þ
Where, the vector a! changes linearly from zero to 2 along the

iteration loop. In the first iteration, it is equal to 2, and in the last
iteration, it is equal to zero. The vectors r1

! and r2
! are random vec-

tors in the range of zero to 1. In modeling the hunting behavior of
gray wolves, alpha, beta and delta wolves are used assuming that
they have more information about the hunting position; therefore,
the position of omega wolves based on these three wolves (optimal
answers) is updated according to the following relationships (Bian
et al., 2017):

Xðtþ 1Þ�����! ¼ X1
�!þ X2

�!þ X3
�!

3
ð25Þ

X1
�! ¼ Xa

�!� A1
�!

Da
�!��� ���; X2

�! ¼ Xb
�!� A2

�!
Db
�!��� ���; X3

�!
¼ Xd
�!� A3

�!
Dd
�!��� ��� ð26Þ

Da
�! ¼ C1

�!
: Xa
�!� X

!��� ���; Db
�! ¼ C2

�!
: Xb
�!� X

!��� ���; Dd
�!

¼ C3
�!

: Xd
�!� X

!��� ��� ð27Þ

The vectors X1
�!

, X2
�!

and X3
�!

are the three optimal answers of

the algorithm in the iteration of t. The vector A
!

has a random value

between �2a and 2a. When A
!��� ��� < 1;the wolves attack and when

A
!��� ��� > 1; the wolves have to change their position to find the prey

(see for more details [17]).
To find the optimal cascade, the GWO algorithm first generates

a random population of wolves (answers). For separation in four
steps, each cascade will have five parameters for optimization,
and a total of 20 random parameters will be generated. The values



First cascade (step 1)

Second cascade (step 2)

Third cascade (step 3)

Fourth cascade (step 4)

Fig. 8. Concentration distribution of stages during separation steps for the test case
1.

First cascade (step 1)

Second cascade (step 2)

Third cascade (step 3)

Fourth cascade (step 4)

Fig. 9. Interstage cuts for the test case.
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of these defined parameters are between the defined maximum
and minimum values. The four-step separation, for instance, has
random parameters as follows:

T ¼ NF1 Feed1 h11 f GC1 hcas1 NF2 Feed2 h12 f GC2 hcas2
NF3 Feed3 h13 f GC3 hcas3 NF4 Feed4 h14 f GC4 hcas4

� 	
ð28Þ
8

In this vector, all parameters belong to one cascade in different
separation steps, NF is the feed location, Feed denotes the input
feed flow rate, h1 represents the cut of the first stage, fGC is the feed
flow rate of a centrifuge and hcas stands for the cascade cut. Fig. 3
illustrates the GWO algorithm for finding the optimal answer.
The value of objective function is calculated by a trained neural
network. For second test case in this research, N (number of stages)
and number of GCs in a stage is also added to above vector.



Table 5
The concentration of isotopes in light and heavy sides for test case 1.

Isotope Light side Heavy side

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4

120Te 0.0180 0.0301 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
122Te 0.5098 0.8494 0.0288 0.2523 0.0000 0.0057 0.0008 0.0003
123Te 0.1733 0.0933 0.9706 0.7477 0.0002 0.2920 0.1478 0.9990
124Te 0.2793 0.0266 0.0006 0.0000 0.0352 0.6545 0.7934 0.0007
125Te 0.0101 0.0004 0.0000 0.0000 0.0739 0.0244 0.0296 0.0000
126Te 0.0049 0.0001 0.0000 0.0000 0.1976 0.0120 0.0145 0.0000
128Te 0.0030 0.0000 0.0000 0.0000 0.3335 0.0076 0.0092 0.0000
130Te 0.0016 0.0000 0.0000 0.0000 0.3595 0.0039 0.0048 0.0000

Table 6
Maximum concentration can be obtained from light and heavy sides for test case 1.

No. Cmax
P;De (Light side) Cmax

W;De (Heavy side) Product side

Step 1 0.2521 0.0091 Light
Step 2 0.2471 0.3669 Heavy
Step 3 0.9808 0.2936 Light
Step 4 0.9711 0.9993 Heavy
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3.3. Prediction of objective function by an artificial neural network
(ANN)

ANNs are approaches of machine learning operation that teach
the computers to perform several tasks by taking into account the
training data and examples. ANNs generate the recognizing fea-
tures from the learning data which they process, automatically.
In fitting problems, neural network plans between a data set of
numeric inputs and a set of numeric targets. The networks can
be trained with Levenberg-Marquardt back propagation, Bayesian
Fig. 10. The neural network training regressi

9

Regularization, and Scaled Conjugate Gradient algorithms. An
ANN is a strong Toolbox in MATLAB which has been used in this
research (Naserbegi et al., 2020a). In order to develop the predic-
tions to use as an objective function in GWO, two feed-forward
multi-layer neural network with a 40 hidden layer has been used.
The first network considers four cascades simultaneously with 20
inputs (see Fig. 3). The second network applies on single cascade
with 13 inputs (see Fig. 3). The square cascade was simulated to
apply the input data for the neural network. Moreover, the concen-
tration and amount of the product have calculated for 5000 ran-
domly produced data for square cascades. All data have been
divided into three categories by network including a) training
(3500 of the data), b) validation to estimate the extension of the
network (750 of the data) and c) test data to estimate the perfor-
mance of the network (750 of the data), randomly. The
Levenberg-Marquardt algorithm has been chosen for the both net-
works due to taking less time. Training automatically stops when
generalization stops improving, as represented by a rise in the
mean square error (MSE) of the validation data. Fig. 3 shows the
schematic diagram of the networks. The first network has an out-
on for the neural network in test case 2.



Table 7
The GWO-ANN results for the test case 2.

parameter Run number

1 2 3 4 5 6 7 8

NF1 27 32 25 26 31 30 28 27
Feed1 0.496 0.51 0.487 0.492 0.449 0.506 0.501 0.482
h11 0.549 0.525 0.549 0.544 0.537 0.495 0.522 0.487
f GC1 18.05 17.29 18.47 20.39 19.35 18.45 19.23 20.66
hcas1 0.052 0.051 0.05 0.051 0.051 0.052 0.05 0.05
NF2 32 33 28 30 33 33 31 30
Feed2 1.47 1.5 1.47 1.52 1.51 1.48 1.47 1.49
h12 0.501 0.551 0.5 0.542 0.526 0.533 0.519 0.543
f GC2 11.12 10.51 10.84 10.91 11.38 12.05 11.61 11.45
hcas2 0.529 0.538 0.516 0.545 0.551 0.576 0.593 0.599
NF3 4 5 4 4 3 4 5 3
Feed3 0.69 0.71 0.71 0.68 0.69 0.77 0.74 0.69
h13 0.492 0.444 0.461 0.502 0.512 0.469 0.505 0.477
f GC3 9.97 10.97 10.2 10.11 9.95 11.27 11.45 10.38
hcas3 0.19 0.195 0.187 0.192 0.192 0.199 0.215 0.22
NF4 31 34 33 30 34 32 31 31
Feed4 0.3 0.301 0.309 0.301 0.311 0.319 0.306 0.314
h14 0.428 0.428 0.428 0.428 0.428 0.428 0.428 0.428
f GC4 13.98 12.2 13.29 11.64 14.48 12.35 13.31 13.18
hcas4 0.088 0.083 0.091 0.098 0.09 0.09 0.089 0.102
N 65 65 65 65 65 65 65 65
NGC 2 2 2 2 2 2 2 2
Concentration 0.9990 0.9990 0.9990 0.9990 0.9990 0.9991 0.9990 0.9991
Product (gr/year) 63.66 63.20 61.70 60.28 60.01 59.89 59.79 59.42
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put which is the objective function defined in section 3–1. The sec-
ond network can calculate the output parameter for a single cas-
cade. By 4-times using this network, the objective function for a
4-step separation plant can be predicted. Fig. 4 shows the major
steps of GWO-ANN optimization approach.

4. Results and discussion

For first test case, to separate the 123Te from 15 kg of natural
feed in order to reach 99.9% concentration, four square cascades
with 40 stages and 4 centrifuges in each stage are used. In this case,
the cascades configuration and number of GCs are fixed. In second
case, the total number of the CGs in four connected cascades is also
minimized. In this case the number of the stages (N) and number of
GCs in a stage are included into the optimization parameters. For
two cases, the base septation factors are different. It means the
separation capacities are different. Table 1 shows the natural feed
concentrations of Tellurium.

4.1. Test case 1

In this case, the objective function is evaluated according to the
Eq. (20a). Two networks (ANN1 and ANN2) are trained and the effi-
cient one is chosen. By several times training of networks and
modeling the data, two networks with the low errors have been
obtained. Figs. 5 and 6 illustrate the validation data, error regres-
sion of networks for training data, and test data for ANN1 and
ANN2, respectively. Based on Figs. 5 and 6, the networks are going
to operate properly while the calculated values approaching 1.

The proficiency of the proposed networks can be investigated
by the criteria of

mean absolute error (MAE), root mean square error (RMSE), and
mean absolute percentage error (MAPE).

MAE ¼ 1
n

Xn
1

XModel � XRealj j ð29Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
1

XModel � XRealð Þ2
s

ð30Þ
10
MAPE ¼ 1
n

Xn
1

XModel � XRealj j
XReal

� � !
� 100 ð31Þ

Where n is the number of models, XReal is the value obtained by sim-
ulation of square cascades and XModel is the objective functions
obtained by the trained network. The real values and the prediction
values of the model for ANN1 and ANN2 are shown in Fig. 7. This
comparison is carried out for 30 random samples. The value of
MAE, RMSE and MAPE are presented in Table 2. The error calculation
results confirm that the predicted values are in good agreement
with the real values. The RMSE values for the two networks indicate
that the GWO-ANN can be a proper tool in the optimization process.

In Table 3, the time consumption of the networks for four-step
separation is presented. The results are the average of 10-times
repeating of the test. It can be seen; the first network has the lower
time consumption. In the simulation, the non-linear conservation
equations for multi-component system are solved by iteration
method. So, the two networks reduce the time consumption signif-
icantly. For example, the optimization operation with 1000 itera-
tions and 30 initial search agents by GWO takes approximately
10 h on a personal computer (Intel (R) Core (TM) i7-9750H CPU
@ 4.40 GHz). It takes about 130 s by replacing the first network
with the objective function.

The first network is used in the GWO algorithm evaluations,
regarding its time consumption. All GWO-ANN parameters for
the 8 best runs and the top objective values are given in Table 4.
In this case, for simplicity the separation factor of the GCs is con-
sidered as a function of the GC feed flowrate (f GC) (Eq. (32)). The
minimum allowable flow rate to a GC is 1 mg/s and the maximum
allowable flow rate to a GC is 20 mg/s.

a0 ¼ 1:3f�0:05
GC ð32Þ

For the best run (Run No.1), the four-step separation of cascades
produce 46.9 gr of 123Te with 99.9% concentration per year. In this
evaluation, the results and the process parameters used for simu-
lation are presented in Figs. 8–9, respectively. Fig. 8 shows the con-
centration of isotopes along the cascades at each step.

It can be seen, the 123Te concentration increases in each step
and desired concentration is obtained in fourth cascade. Fig. 9



First cascade (step 1)

Second cascade (step 2)

Third cascade (step 3)

Fourth cascade (step 4)

Fig. 11. Concentration distribution of stages during separation steps for the test
case 2.

First cascade (step 1)

Second cascade (step 2)

Third cascade (step 3)

Fourth cascade (step 4)

Fig. 12. Interstage cuts for the test case 2.
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shows the changes in the interstage cuts of the cascades in differ-
ent steps. The values of interstage cuts vary between 0.35 and 0.6.
To apply these cuts to the cascades, the control valves and pressure
functions can be used to operate the cascades.

Table 5 shows the concentration of isotopes in light and heavy
sides of each step. Using Eqs. (18) and (19) the maximum concen-
11
tration of the desired isotope in each step calculated and presented
in Table 6. It can be seen, the selected path for the separation of
123Te is correct.



Table 8
The optimal parameters for test 2 (limited feed flow rate).

Step No. NF Feed h1 fGC hcas

Step 1 40 0.519 0.374 1.970 0.050
Step 2 36 0.506 0.351 2.499 0.573
Step 3 11 0.303 0.350 1.656 0.173
Step 4 13 0.456 0.416 2.141 0.081

Table 9
The concentration of isotopes in light and heavy sides for test case 1.

Isotope Light side Heavy side

Step 1 Step 2 Step 3 Step 4 Step 1 Step 2 Step 3 Step 4

120Te 0.0001 0.0068 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
122Te 0.0045 0.6608 0.0050 0.0371 0.0000 0.0101 0.0010 0.0003
123Te 0.0182 0.2871 0.9712 0.9628 0.0000 0.3173 0.1684 0.9990
124Te 0.9660 0.0452 0.0238 0.0000 0.0327 0.6724 0.8303 0.0007
125Te 0.0106 0.0000 0.0000 0.0000 0.0745 0.0002 0.0003 0.0000
126Te 0.0006 0.0000 0.0000 0.0000 0.1982 0.0000 0.0000 0.0000
128Te 0.0000 0.0000 0.0000 0.0000 0.3343 0.0000 0.0000 0.0000
130Te 0.0000 0.0000 0.0000 0.0000 0.3602 0.0000 0.0000 0.0000

Table 10
Maximum concentration can be obtained from light and heavy sides for test case 2.

No. Cmax
P;De (Light side) Cmax

W;De (Heavy side) Product side

Step 1 0.2521 0.0091 Light
Step 2 0.2520 0.3520 Heavy
Step 3 0.9690 0.3205 Light
Step 4 0.9509 0.9993 Heavy
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4.2. Test case 2

In this case, the number of stages and the number of GCs in each
stage added to the optimization parameters, and the obtained
parameters are used for all steps. The unit separation factor of
GCs is considered as a function of feed flow rate and cut according
to Eq. (33). It is used in Eq. (15) for multi component separation
factor calculation in q-iteration method.

a0 ¼ ð0:5� 0:5hþ 0:246h2Þ f GC þ 13:79ð Þ�0:08 ð33Þ
Where h and f GC are the cut and feed flow rate of a single GC, respec-
tively. Due to using 2 more optimization parameters (n umber of
stages and number of GCs), 10,000 randomly generated data have
been used for training the network. In this case using previous case
experience proper network is trained. The Levenberg-Marquardt
algorithm is selected to train the networks with 40 hidden layers.
Fig. 10 illustrate the validation data, the error regression of network
for training data. Based on Fig. 10, the network has high accuracy
(R = 0.99069) for using in the optimization algorithm.

All the parameters for the 8 best runs and the lowest objective
values are given in Table 7. In these two cases 20 search agents are
considered.

For the best run, the cascade has 65 stages with 2 GCs in each
stage. This four-step configuration produces 63.6 gr of 123Te with
99.9% concentration per year. The results and the parameters used
for simulation are presented in Figs. 11–12, respectively. Fig. 11
shows the concentration of isotopes along the cascades for each
step and Fig. 12 shows the interstage cuts for each step. This case
uses different separation factor (Eq. (33)). It means machines used
in this test has different separation capacity. Evaluating Eq. (33)
shows, it has higher values in high fGC in comparison of Eq. (32).
This drives the optimization algorithm to find higher fGC in calcula-
tions. The different selected flowrates for two test cases are obvi-
12
ously reported in Tables 4 and 7. Although the number of
machines has decreased in this case, but the length of the cascade
has increased and due to having a higher separation factor at high
feed flows the production rate has increased. For more justification,
in this case the feed flow rate of GCs is limited to 1–3 (mg/s). In this
variant, the optimal parameters are reported in Table 8. The num-
ber of the stages is 60; the number of GCs in a stage is 4 and 51 gr/
year of product (99.9%) is obtained. It is clear that the number of
GCs increases and the product rate decreases.

Table 9 shows the concentration of isotopes in light and heavy
sides of steps. Using equations (18) and (19) the maximum concen-
tration of the desired isotope in each step are presented in Table 10.
As can be seen, the selected path for the separation of 123Te is
correct.
5. Conclusion

In this study, optimization of four connected square cascades
for 123Te separation to 99.9% concentration is presented. In this
regard, by applying the GWO algorithm the square cascades
parameters have been optimized. Two different test cases with dif-
ferent trained neural networks have been also used for predicting
the objective functions. The results evaluation show, in both cases
the networks have proper accuracy. They reduce computing time
up to 98%. In test case 1, the network which has 20 inputs and con-
siders the four cascades simultaneously, reduces the time con-
sumption more than the network which can be used for single
cascade; as a result, this network used to objective function evalu-
ations in GWO optimization. The amount of product with the
desired concentration (99.9%) for the 40 stages with 4 GCs in each
stage is determined. In this case the cascade configuration is fixed
and the parameters are optimized. In optimal design, by consum-
ing 15 kg natural Tellurium, 46.9 gr/year 123Te with 99.9% concen-
tration is obtained. In the second case, the number of stages and
GCs in each stage added to the optimization parameter, and a
new network with 22 inputs is trained for the GWO optimization
algorithm. In this case, machines with different separation capacity
are used. The results show that square cascades with 65 stages and
2 GCs in each stage can produce 63.6 gr/year 123Te with 99.9% con-
centration. Applying limitation in feed flow of a GC, changes the
configuration to 60 stages and 4 GCs in each stage and the product
rate is decreased to 51 gr/year.
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