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Abstract 12 

Accurate estimation of boundary conditions in pressurized pipelines is essential for effective 13 

monitoring, control, and fault detection. However, boundary variables such as unmeasured 14 

demands and unknown pressure heads are often unavailable, introducing uncertainty into 15 

hydraulic models. This study presents a real-time observer-based framework for joint 16 

estimation of system states and unknown boundary inputs. The approach employs the Elastic 17 

Water Column Model (EWCM) to derive a linear time-invariant (LTI) representation 18 

compatible with observer design. Because the system does not satisfy the observer matching 19 

condition, auxiliary outputs are generated to transform it into a matched form. These outputs 20 

are first estimated using a High-Gain Observer (HGO) and then incorporated into a Sliding 21 

Mode Observer (SMO) for reconstructing both states and boundary conditions. 22 
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The framework is validated through two numerical case studies and laboratory experiments 24 

involving transient pipeline flows. Results demonstrate accurate real-time estimation of 25 

unknown boundary conditions using only internal pressure data. Compared with batch-based 26 

methods such as Expectation–Maximization and Weighted Least Squares, the proposed 27 

observer-based strategy provides a computationally efficient and real-time alternative for 28 

hydraulic system monitoring.  29 

Keywords: Dynamic state estimation, Unknown boundary conditions, Elastic water column 30 

model, High-gain observer, Sliding mode observer. 31 

Introduction 32 

The accurate estimation of system states and unknown inputs is a fundamental challenge in 33 

many engineering applications, including fluid mechanics, control systems, and structural 34 

health monitoring [1-3]. In pressurized pipeline systems, this challenge is particularly 35 

prominent due to the inherent limitations in sensor coverage and the dynamic interactions 36 

between boundary conditions and internal states. Inflows and outflows are often unmonitored 37 

or only partially observed, and pressure sensors may be deployed sparsely due to cost or 38 

accessibility constraints. These factors introduce uncertainty into hydraulic models, reducing 39 

their effectiveness for monitoring, fault detection, and real-time control [4, 5]. In practical 40 

settings, boundary conditions such as pressure variations at reservoirs, connections of sub-41 

networks to broader systems or unmeasured consumer demands are not always directly 42 

observable. For example, while a pipeline may be equipped with internal pressure sensors, the 43 

influence of changes at the boundaries may not be reflected in the measured outputs in a 44 

straightforward manner. Moreover, pipeline systems are subject to external disturbances and 45 
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varying operational regimes, which make it difficult to maintain accurate state awareness using 46 

traditional modeling techniques. 47 

Traditional approaches to handling these uncertainties often rely on optimization-based 48 

techniques such as Expectation-Maximization (EM), Weighted Least Squares (WLS), and 49 

Inverse Transient Analysis (ITA) [6-10]. These methods typically operate in batch mode, 50 

requiring historical data and iterative parameter tuning. While suitable for offline analysis, their 51 

high computational demands and dependency on prior data limit their application in real-time 52 

monitoring or control environments. Moreover, these approaches often assume that 53 

uncertainties are fixed over time or follow specific statistical models, which may not hold under 54 

dynamically changing operating conditions. 55 

These limitations motivate the development of an approach capable of real-time estimation 56 

using observer-based methods rather than iterative optimization. A promising alternative arises 57 

from state observers, which reconstruct unmeasured states and inputs dynamically from limited 58 

measurements. A class of such observers, known as UIOs, has been developed to estimate 59 

internal states while decoupling the effect of unknown inputs [11-14]. UIOs are designed such 60 

that the estimation error is insensitive to unmeasured disturbances, allowing for reliable state 61 

reconstruction. Depending on the application, UIOs can be implemented in centralized or 62 

distributed forms. In centralized implementations, all measurements are processed together to 63 

estimate the complete system state. In contrast, distributed observers achieve estimation 64 

cooperatively across interconnected subsystems, each using local information and limited data 65 

exchange [15]. Such designs are particularly relevant for large-scale systems, as demonstrated 66 

in the distributed interval observer and distributed UIO formulations presented in[16]. These 67 

studies show how observer-based estimation can be extended to networked or multi-agent 68 

systems. 69 
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Other developments have aimed to improve convergence speed or robustness. For instance, 70 

prescribed-time UIOs for descriptor systems [17] and their distributed counterparts [18] 71 

guarantee convergence within a user-specified time window using structure decomposition and 72 

prescribed-time convergence tools. These contributions broaden applicability to descriptor 73 

(singular) and multi-agent systems where strict timing is critical. However, such prescribed-74 

time designs are primarily relevant to aerospace or robotic systems, whereas hydraulic systems 75 

evolve on slower time scales, and convergence within a fixed time window is generally 76 

unnecessary. 77 

Despite their versatility, classical UIOs require two strict mathematical conditions: the 78 

observer matching condition (OMC) and the minimum-phase condition [19, 20]. The OMC 79 

ensures that the unknown input affects the system through the same channel as the measured 80 

outputs. In hydraulic terms, this means that if an unknown input (e.g., a leak or unmeasured 81 

demand) appears in the continuity equation for a given node, a pressure measurement must also 82 

be available at that same location. This co-location guarantees that the influence of the 83 

unknown input is reflected in the output, allowing the observer to infer it. When this condition 84 

is satisfied, a UIO can be designed directly. However, in most practical hydraulic systems, 85 

sensors are not co-located with uncertain boundaries, producing unmatched conditions that 86 

violate the OMC and make direct observer design infeasible. 87 

This mismatch renders the estimation problem mathematically underdetermined, with fewer 88 

independent equations than unknowns. To overcome this, researchers have developed various 89 

strategies to relax or bypass the OMC and minimum-phase requirements. A key line of work, 90 

pioneered by Kalsi et al. and Floquet et al., introduced the use of differentiated auxiliary outputs 91 

and a two-stage structure combining HGOs and SMOs [21-23]. The approach differentiates 92 

measured signals until the unknown inputs appear explicitly in the output equations, thereby 93 

transforming the system into a form that satisfies the matching condition. Because these 94 
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differentiated outputs are not directly measurable, they must first be estimated by an HGO, 95 

after which an SMO reconstructs both the system states and unknown inputs. This two-stage 96 

strategy effectively extends UIO applicability to systems that do not naturally meet the OMC, 97 

and similar two-observer frameworks have also been employed for sensor fault estimation and 98 

fault-tolerant control in nonlinear systems, such as the 3-DOF helicopter study by Wang and 99 

Tan [24], where a combined HGO–SMO structure enabled accurate fault reconstruction despite 100 

unmatched and non-minimum-phase dynamics. 101 

Subsequent studies have also addressed the minimum-phase condition, developing 102 

formulations that enable observer design even in non-minimum-phase or nonlinear settings 103 

[25]. Parallel advances have expanded UIO-related concepts to enhance robustness against 104 

modeling uncertainties and disturbances. For example, interval-based observer designs [16, 26, 105 

27] have been proposed to provide guaranteed bounds on state estimates and improve 106 

robustness to model uncertainty. In a different direction, the left-invertibility formulation by 107 

Zhang and Zhu [28] introduced a constructive method to augment measured outputs so that the 108 

OMC can be satisfied even when auxiliary-output approaches fail. Their method is particularly 109 

useful when no relative-degree-based augmentation can recover the required rank condition. 110 

These theoretical developments have established a strong mathematical foundation for 111 

extending observer-based estimation to broader classes of systems. 112 

Despite this progress, most of the above works have been developed in aerospace, robotic, 113 

and electrical domains, where the physical processes and measurement architectures differ 114 

fundamentally from those of hydraulic systems. To date, no systematic framework has been 115 

established for applying UIO or SMO concepts to pressurized pipelines, even though such 116 

systems naturally exhibit unmatched boundary conditions, sparse sensor deployment, and 117 

uncertain disturbances. 118 
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The present study addresses this gap by introducing a real-time observer-based framework 119 

for hydraulic pipelines. A linear state-space model is first derived using the EWCM, which 120 

reformulates the transient flow equations into a structure suitable for observer design. Auxiliary 121 

outputs are generated using a HGO, and a SMO is applied to jointly estimate internal states and 122 

unknown boundary conditions. The use of HGOs enables estimation of unmeasured variables 123 

without requiring explicit statistical noise models, while SMOs provide robustness against 124 

bounded disturbances and modeling errors. 125 

The novelty of this work lies in bridging the gap between established observer theory and 126 

its application to hydraulic pipelines. Specifically, the contributions are: (i) the development of 127 

a linear state-space formulation of pipelines using the EWCM that is suitable for observer 128 

design; (ii) the integration of HGOs and SMOs in a two-stage structure to overcome the OMC 129 

and enable real-time estimation; and (iii) the first experimental demonstration of observer-130 

based reconstruction of unknown boundary conditions in pressurized pipelines. To evaluate the 131 

performance of the proposed framework, two numerical case studies have been conducted. The 132 

first case involves the estimation of an unmeasured demand based on internal pressure data, 133 

reflecting a common situation in hydraulic monitoring where unknow withdrawals occur at 134 

certain locations. The second case concerns the estimation of unknown boundary pressures 135 

using only internal sensor data, a scenario highly relevant to real-time control. In addition to 136 

simulations, experimental validation has been performed on a laboratory pipeline setup where 137 

two boundary heads has been estimated by the purposed approach. The remainder of this paper 138 

is structured as follows. Section 2 introduces the EWCM and its discretization, leading to a 139 

state-space formulation. Section 3 describes the observer design, detailing the use of HGOs for 140 

auxiliary output estimation and SMOs for joint state and unknown input estimation. Section 4 141 

presents the results from two numerical simulations and Section 5 presents the experimental 142 

validation. Finally, Section 6 concludes the paper and outlines directions for future research, 143 
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including potential extensions to larger pipeline networks with multiple unmeasured boundary 144 

conditions. 145 

Elastic Water Column Model 146 

The behavior of transient flow in pressurized pipeline systems is governed by the one-147 

dimensional partial differential equations of momentum and continuity. These equations 148 

describe the relationship between pressure head, flow rate, and system dynamics, incorporating 149 

the effects of fluid compressibility and pipe elasticity. The governing equations are expressed 150 

as [29]: 151 

(1) 
𝜕ℎ

𝜕𝑥
+

1

𝑔𝒜

𝜕𝑞

𝜕𝑡
+

𝑓𝑞|𝑞|

2𝑔𝐷𝒜2
= 0 

(2) 𝑔𝒜

𝑎2

𝜕ℎ

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 

where h represents the piezometric head, q is the volumetric flow rate, g is the gravitational 152 

acceleration, 𝒜 is the internal cross-sectional area of the pipe, D is the pipe diameter, and f is 153 

the Darcy-Weisbach friction factor. These equations provide a continuous representation of 154 

transient flow, capturing wave propagation effects due to the compressibility of water and 155 

elasticity of pipes. For practical applications, a pipeline section of length 𝑙 is often analyzed 156 

under the assumption of spatially uniform conditions, approximating the spatial derivatives as 157 

finite differences (𝜕ℎ/𝜕𝑥 ≈ ∆ℎ/𝑙 and 𝜕𝑞/𝜕𝑥 ≈ ∆𝑞/𝑙). This results in a discrete form of the 158 

transient flow equations [30]: 159 

(3) ∆ℎ = −𝐿
𝜕𝑞

𝜕𝑡
− 𝑅𝑞|𝑞| 

(4) 
∆𝑞 = −𝐶

𝜕ℎ

𝜕𝑡
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where 𝐿 is the hydraulic inductance (𝐿 =
𝑙

𝑔𝒜
), C is the hydraulic capacitance (𝐶 =

𝑔𝐴𝑙

𝑎2
), and 160 

R is the hydraulic resistance (𝑅 =
𝑓𝑙

2𝑔𝐷𝒜2). The electrical equivalent circuit is often used to 161 

approximate hydraulic behavior, where the pipe segment is modeled using a π-type circuit 162 

representation [31, 32]. Fig. 1 shows the electrical equivalent circuit for two segments of a 163 

pipe.  164 

 
Fig. 1. Electrical Equivalent Circuits for two segments of a pipe. 

 165 

To capture higher frequencies, the pipeline can be divided into segments. The first two nodes 166 

are designated as head boundary nodes, while the remaining nodes serve as internal nodes. 167 

External demands can be considered at the locations of internal nodes. For a structured 168 

mathematical formulation, the nodal head vector is partitioned as: 169 

(5) 𝒉 = [
𝒉𝐼

𝒉𝑅
] 

where 𝒉𝐼 represents the heads at internal nodes, and 𝒉𝑅 corresponds to the heads at boundary 170 

nodes. Using this partitioning, the vector of head differences across each pipeline segment is 171 

expressed as: 172 

(6) ∆𝒉 = [
𝚳𝐼

𝚳𝑅
]
⊺

[
𝒉𝐼

𝒉𝑅
] 

Where ⊺ operator represents the transpose operator, and the matrices 𝚳𝐼 and 𝚳𝐵 are defined 173 

as:  174 



9 

 

(7) 𝚳𝐼 ϵ ℝ
(𝑛𝑠−1)×𝑛𝑠 , 𝑴𝐼𝑖,𝑗

= {
−1 𝑖𝑓 𝑗 = 𝑖
1 𝑖𝑓 𝑗 = 𝑖 + 1
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

    𝑴𝑅𝑖,𝑗
= [

1 0(1×(𝑛𝑠−1))

0(1×(𝑛𝑠−1)) −1
]    

Following the formulation in [31], the demand vector Q and the hydraulic parameter matrices 175 

L, R, and C (all diagonal) are incorporated into the momentum and continuity equations 176 

governing the pipeline system. The momentum equation is given by: 177 

(8) 𝑳
𝑑𝒒

𝑑𝑡
= −𝑹diag{|𝒒|}𝒒 + 𝚳𝐼

⊺𝒉𝐼 + 𝚳𝑅
⊺ 𝒉𝑅 

where |𝒒| represents the element-wise absolute value of the flow rate vector (hereon, the 178 

absolute value function of a vector or matrix represents an elementwise operation). The 179 

continuity. The continuity equation at internal nodes is expressed as: 180 

(9) (
1

2
|𝚳𝐼|𝑪)

𝑑𝒉𝐼

𝑑𝑡
= 𝚳𝐼𝒒 + 𝑸 

Eq. (14) and (15) constitute a system of nonlinear ODEs for transient simulation of a pipeline. 181 

This formulation has been validated using the Method of Characteristics, and further details 182 

can be found in [31]. 183 

Nonlinear System Representation 184 

Eq. (8) and Eq. (9) can be expressed in a compact state-space form. To achieve this, the state 185 

vector 𝑥 is defined to include both the flow rates through the pipes and the hydraulic heads at 186 

the internal nodes:  187 

(10) 𝒙 = [
𝒒
𝒉𝐼

] 

The inputs to the system are the hydraulic heads at the boundary nodes and the external 188 

demands applied at internal locations: 189 

(11) 𝒖 = [
𝒉𝑅

𝑸
] 
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In this formulation, the system's nonlinear dynamics can be expressed as: 190 

(12) 𝒙̇ = 𝑓(𝒙, 𝒖) 

This equation describes how the state vector 𝑥 evolves over time as a nonlinear function 191 

𝑓(𝒙, 𝒖) of the state and the inputs. Solving this equation provides the complete transient 192 

response of the pipeline to changes in external demands or boundary conditions, capturing both 193 

flow rates and hydraulic heads along the system. 194 

Linearization and State-Space Representation 195 

To apply observer-based estimation techniques, the nonlinear EWCM model needs to be 196 

expressed in a LTI form. Since EWCM is inherently nonlinear, linearization is performed 197 

around a steady-state operating point to obtain a state-space representation suitable for real-198 

time estimation. This is achieved by expanding the system dynamics 𝑓(𝒙, 𝒖) in a first-order 199 

Taylor series around the equilibrium point 𝒙0, 𝒖0 leading to the linearized state-space 200 

representation [33]:  201 

(13) 𝒙̇ = 𝑨𝒙 + 𝑩𝒖 

Here, 𝐴 and 𝐵 are the Jacobian matrices of partial derivatives with respect to the state and input, 202 

respectively. The system matrix 𝐴 characterizes how flow rates and hydraulic heads evolve in 203 

response to perturbations in the state, while the input matrix 𝐵 describes how external inputs, 204 

such as boundary conditions or demand variations, influence the system. The structure of 𝐴 205 

depends on the spatial discretization of the pipeline and its hydraulic properties. In practical 206 

applications, the dynamics in Eq. (13) are also affected by modeling uncertainty, sensor noise, 207 

and unmeasured boundary disturbances. These effects are collectively represented by an 208 

additional input term 𝑫𝒘, where 𝒘 denotes unknown or unmeasured inputs such as fluctuating 209 

reservoir heads or demand variations. The linearized model can therefore be expressed as  210 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 + 𝑫𝒘, which serves as the basis for unknown-input observer design. 211 
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Observer based state estimation  212 

In many real-world dynamic systems, including single pipelines, certain inputs remain 213 

unknown or unmeasurable due to sensor limitations, external disturbances, or uncertain 214 

boundary conditions. Estimating both the internal states and these unknown inputs is crucial 215 

for effective monitoring and control. UIO provide a mathematical framework to estimate 216 

system states while accounting for such unknown inputs. In this context, the UIO is not itself 217 

the physical quantity being estimated, but rather the estimation mechanism used to reconstruct 218 

both the internal states 𝑥 and the unknown boundary conditions, which appear mathematically 219 

as components of the disturbance vector 𝑤. 220 

Classical UIO and the Observer Matching Condition 221 

A LTI system with unknown inputs can be generally expressed as[34]: 222 

(14) 

𝒙̇ = 𝑨𝒙 + 𝑩𝒖 + 𝑫𝒘 

𝒚 = 𝑪𝒙 

where the state vector x consists of the system’s flow rates and hydraulic heads. The number 223 

of pipes in the network is denoted by 𝑛𝑝, while the number of internal nodes is represented by 224 

𝑛𝑖. As a result, x is a column vector of dimension (𝑛𝑝 + 𝑛𝑖) × 1, capturing the complete 225 

hydraulic state of the pipeline system. The measured output vector 𝑦 represents the available 226 

sensor readings, such as pressure measurements at specific locations within the network. The 227 

number of sensors deployed determines the dimension of 𝑦, which is 𝑝.  228 

The known input vector 𝑢 includes control inputs, such as boundary conditions at monitored 229 

locations, reservoir heads, or external demands applied at specific nodes. The dimension of 230 

known inputs is 𝑚1. The unknown input vector 𝑤 accounts for disturbances and unmeasured 231 
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boundary conditions, and the number of unknown inputs is 𝑚2. A, B, C, D are known fixed 232 

matrices of appropriate dimension.  233 

An UIO is designed to estimate x independently of w, ensuring that the state estimation error 234 

is not affected by the unknown inputs. However, a fundamental requirement for designing a 235 

classical UIO is the observer matching condition, which states that the unknown input w must 236 

appear in the same subspace as the measured output y. Mathematically, this condition is:  237 

rank{𝑪𝑫} = rank{𝑫} = 𝑚2 238 

which ensures that the unknown input does not introduce an unobservable mode in the system. 239 

When this condition is not satisfied, the unknown input is said to be unmatched, meaning it 240 

does not directly appear in the measured output channel. As a result, a classical UIO cannot be 241 

used in such cases. In hydraulic systems, unknown boundary conditions (such as unmeasured 242 

heads, leaks, or demand variations) often do not directly affect the measured outputs in a way 243 

that satisfies the observer matching condition and rank{𝑪𝑫} < 𝑚2. This creates a fundamental 244 

challenge in real-time state estimation. 245 

To address this limitation, an auxiliary output approach is introduced, which transforms the 246 

system into a form where the unknown inputs can be reconstructed. A common strategy to 247 

circumvent the observer matching condition is to augment the output space by generating 248 

auxiliary outputs that explicitly incorporate the influence of the unknown inputs. This is 249 

achieved by differentiating the output until the unknown input explicitly appears, effectively 250 

increasing the system’s observability. If the system does not satisfy the classical matching 251 

condition, the relative degree 𝑟𝑖 of each output 𝒚𝑖 with respect to the unknown input w is 252 

defined as the smallest integer such that [22]: 253 

(15) 

𝑪𝑗𝑨
𝑘𝑫 = 0  for all 𝑘 < 𝑟𝑗 − 1 

𝑪𝑗𝑨
𝑟𝑗−1𝑫 ≠ 0 
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This means that the unknown input w only appears in the 𝑟𝑗 − 𝑡ℎ derivative of the output 𝒚𝑗. 254 

If all system outputs have a relative degree of one, the classical UIO can be directly applied. 255 

However, in cases where some outputs have a higher relative degree, additional differentiation 256 

is required to reveal the unknown inputs. To construct an observer that accounts for unmatched 257 

unknown inputs, an augmented output vector is introduced: 258 

(16) 𝒚𝑎 = 𝑪𝑎𝒙          𝑪𝑎 =

[
 
 
 
 
 
 

𝑪1

⋮
𝑪1𝑨

𝛾1−1

⋮
𝑪𝑝

⋮
𝑪𝑝𝑨𝛾𝑝−1

]
 
 
 
 
 
 

    

where the integers 1 ≤ 𝛾𝑖 ≤ 𝑟𝑖 are such that 𝑟ank{𝑪𝑎𝑫} = rank{𝑫}, while minimizing the 259 

total sum of 𝛾𝑖 across all outputs. Along with the matching condition, another requirement is 260 

that the system should be minimum phase, and the invariant zeros of the triple {𝑨, 𝑪,𝑫} must 261 

lie in the left half-plane. Floquet and Bartot also proved that the triples {𝑨, 𝑪,𝑫} and {𝑨, 𝑪𝒂, 𝑫} 262 

have the same invariant zeros, and if the main system is minimum phase, the system with the 263 

augmented output will also be minimum phase [21]. 264 

High-Gain Observers for Auxiliary Output Estimation 265 

Before designing the SMO for estimating system states and unknown inputs, the auxiliary 266 

outputs must first be estimated and provided as inputs to the SMO. To achieve this, let 𝑦𝑖𝑗 =267 

𝒄𝑖𝑨
𝑗−1𝒙 for 𝑖 = 1, … , 𝑝 and 𝑗 = 1,… , 𝛾𝑖 leading to the auxiliary output vector representation: 268 

𝒚𝑎 = [𝒚𝑎1
⊺ … 𝒚𝑎𝑝

⊺  ]
⊺
, where 𝒚𝑎𝑖 = 𝑪𝑎𝑖𝑥 = [𝒚𝑎𝑖,1 … 𝒚𝑎𝑖,𝛾𝑖  ]

⊺. 269 

By differentiating 𝒚𝑎𝑖 with respect to time, the following expression is obtained: 270 

(17) 𝒚̇𝑎𝑖 = 𝑪𝑎𝑖𝒙̇ = 𝑪𝑎𝑖𝑨𝒙 + 𝑩𝒖 + 𝑪𝑎𝑖𝑫𝒘 

Introducing the following matrices:  271 
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(18) 𝚲𝑖 = [
0 𝐼𝛾𝑖−1

0 0
] ϵ 𝑅𝛾𝑖×𝛾𝑖 ,   𝑬𝑖 = [

0(𝛾𝑖−1)×1

1
] ϵ 𝑅𝛾𝑖  ,  𝑯𝑖 = 𝑪𝑎𝑖𝑩 = [

𝒄𝑖𝑩
⋮

𝒄𝑖𝑨
𝛾𝑖−2𝑩

𝒄𝑖𝑨
𝛾𝑖−1𝑩

] 

Eq. (17) can then be rewritten as:  272 

(19) 𝒚̇𝑎𝑖 = 𝚲𝑖𝒚𝑎𝑖 + 𝑬𝑖𝑓𝑖(𝒙,𝒘) + 𝑯𝑖𝒖 

where 𝑓𝑖(𝒙,𝒘) = 𝒄𝑖𝑨
𝛾𝑖−1(𝑨𝒙 + 𝑫𝒘). By considering 𝒚𝑖1 = 𝒚𝑖 as the output equation, the 273 

state space representation for 𝒚𝑎𝑖 is given by:  274 

(20) {
𝒚̇𝑎𝑖 = 𝚲𝑖𝒚𝑎𝑖 + 𝑬𝑖𝑓𝑖(𝒙,𝒘) + 𝑯𝑖𝒖

𝒚𝑖1 = 𝒄̅𝑖𝒚𝑎𝑖
 

where 𝒄̅𝑖 = [1 0 … 0] 𝜖 𝑅𝛾𝑖. With this formulation, the system is now suitable for the 275 

design of a HGO. The following observer is constructed to estimate 𝒚𝑎𝑖: 276 

(21) 𝒚̇ℎ𝑖 = 𝚲𝑖𝒚ℎ𝑖 + 𝑯𝑖𝒖 + 𝒍𝑖𝒄̅𝑖(𝒚𝑎𝑖 − 𝒚ℎ𝑖) 

where 𝒚ℎ𝑖 = [𝒚̂𝑎𝑖,1 … 𝒚̂𝑎𝑖,𝛾𝑖  ]
⊺. The gain vector 𝒍𝑖 is defined as 𝒍𝑖 = [

𝛼𝑎𝑖,1

𝜀
…

𝛼𝑎𝑖,𝛾𝑖

𝜀𝛾𝑖
]
⊺

, 277 

where 𝜀 ϵ (0,1) is a design parameter and 𝛼𝑎𝑖,𝑗, 𝑗 = 1, … , 𝛾𝑖 , are selected such that the 278 

characteristic polynomial 𝑆𝛾𝑖 + 𝛼𝑎𝑖,1𝑆
𝛾𝑖−1 + ⋯+ 𝛼𝑎𝑖,𝛾𝑖−1𝑆 + 𝛼𝑎𝑖,𝛾𝑖

= 0, has all roots in the 279 

left half-plane, ensuring system stability [23, 35]. For the convergence analysis, the difference 280 

between the actual and estimated auxiliary outputs is defined as:  281 

(22) 𝒆𝑦 = 𝒚𝑎𝑖 − 𝒚ℎ𝑖 

In order to simplify the analysis, the error is scaled according to:  282 

(23) 𝜁𝑖𝑗 =
𝑦𝑖𝑗 − 𝑦̂𝑖𝑗

𝜀𝛾𝑖−𝑗
       𝑗 = 1,… , 𝛾𝑖, 

The scaled error dynamics take the form:  283 

(24) 𝜀𝜻̇𝑖 = 𝑨̅𝑐𝑖𝜻𝑖 + 𝜀𝑬𝑖𝑓𝑖(𝒙,𝒘)      𝑤𝑖𝑡ℎ 𝑨̅𝑐𝑖 = [
−𝑎𝑎𝑖

⊺ 𝑰𝛾𝑖−1

−𝑎𝑎𝑖,𝛾𝑖
0𝛾𝑖−1

] 



15 

 

Where 𝑎𝑎𝑖 = [𝑎𝑎𝑖,1 … 𝑎𝑎𝑖,(𝛾𝑖−1)] is Hurwitz and 𝑓𝑖(𝒙,𝒘) is bounded. Since 𝑨̅𝑐𝑖 is Hurwitz, 284 

the dynamics are exponentially stable, while the perturbation term is of order 𝜀. By the result 285 

in [36], there exist positive constants 𝛽𝑖 > 0 and finite time 𝑇𝑖(𝜀) such that: 286 

(25) ‖𝜁𝑖(𝑡)‖ ≤ 𝛽𝑖𝜀,    𝑡 ≥ 𝑡0 + 𝑇𝑖(𝜀),    𝑙𝑖𝑚𝜀→0𝑇𝑖(𝜀) 

From Eq. (23) it follows that  287 

(26) 𝒚𝑎𝑖 − 𝒚ℎ𝑖 = 𝑫𝑖𝜻𝑖 

Where 𝑫𝑖 = diag[𝜀𝛾𝑖−1, 𝜀𝛾𝑖−2, … ,1]. Let 288 

(27) 𝒚ℎ = [𝒚ℎ1
⊺ , … , 𝒚ℎ𝑝

⊺ ]
⊺
,   𝑫 = diag[𝑫1, … , 𝑫𝑝],   𝜻 = [𝜻1

⊺ , … , 𝜻𝑝
⊺ ]

⊺
 

Thus, 𝒚𝑎 − 𝒚ℎ = 𝑫𝜻. Since the Euclidean norm of D is unity, i.e. ‖𝑫‖ = 1, it follows that: 289 

(28) ‖𝒚𝑎 − 𝒚ℎ‖ ≤ 𝛽𝜀 

With 𝛽 = (∑ 𝛽𝑖
2𝑝

𝑖=1 )
1 2⁄

. Therefore, after a short transient, the auxiliary outputs generated by 290 

the high-gain observer converge to the true derivatives with an error proportional to 𝜀. 291 

Sliding-mode observer construction 292 

Once the auxiliary outputs are estimated, a SMO can be designed to estimate the system states 293 

and unknown inputs. The sliding mode observer follows the form [34]: 294 

(29) 𝒙̇̂ = 𝑨𝒙̂ + 𝑩𝒖 + 𝑮𝑙(𝒚𝑎 − 𝑪𝑎𝒙) + 𝑮𝑛𝒗𝑐 

where 𝑮𝑙 and 𝑮𝑛 serve as observer gains, while 𝒗𝑐 is an injection signal that is designed based 295 

on the output estimation error:  296 

(30) 𝒗𝑐 = {−𝜌
𝑷2(𝒚𝑎 − 𝑪𝑎𝑥̂)

‖𝑷2(𝒚𝑎 − 𝑪𝑎𝑥̂)‖
   if (𝒚𝑎 − 𝑪𝑎𝒙̂) ≠ 0 

0 otherwise

 

The parameter 𝜌 is a positive constant chosen to exceed the upper bound w. The symmetric 297 

positive definite matrix 𝑷2 is defined in [20] and further detailed in Chapter 6 of [19]. This 298 
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signal ensures that the system reaches a sliding motion within the state estimation error space 299 

in finite time. The primary goal is to guarantee that the state estimation error, defined as 𝒆 =300 

𝒙 − 𝒙̂, remains asymptotically stable and unaffected by the unknown input 𝑤 once the sliding 301 

motion (sliding manifold 𝒔 = 𝑪𝑎𝒆 = 0) is established.  The estimation error dynamics can be 302 

expressed as:  303 

(31) 𝒆̇ = 𝑨𝒆 + 𝑫𝒘 − 𝑮𝑙(𝒚𝑎 − 𝑪𝑎𝒙̂) − 𝑮𝑛𝒗𝑐 

During the sliding motion, the following condition holds: 304 

(32) 𝒔̇ = 𝑪𝑎𝒆̇ = 𝑪𝑎(𝑨 − 𝑮𝑙𝑪𝑎)𝒆 + 𝑪𝑎𝑫𝒘 − 𝑪𝑎𝑮𝑛𝒗𝑐 = 0 

Since the estimation error tends to zero  (𝑒 → 0), the equivalent output rejection term satisfies 305 

𝑪𝑎𝑮𝑛(𝒗𝑐)𝑒𝑞 → 𝑪𝑎𝑫𝒘 . This implies that once sliding motion is established, the equivalent 306 

output rejection term becomes equal to the effect of the unknown input. Given that 𝑪𝑎𝑫 is a 307 

full-rank matrix, an approximation 𝒘̂ of the unknown input w can be obtained as[22]: 308 

(33) 𝒘̂ = ((𝑪𝑎𝑫)⊺𝑪𝑎𝑫)−1(𝑪𝑎𝑫)⊺𝑪𝑎𝑮𝑛(𝒗𝑐)𝑒𝑞 

Numerical simulation 309 

In this section, to demonstrate the capability of the approach, two test cases have been 310 

considered. In the first test case, an unknown demand is estimated in real time based on 311 

information from a single sensor located at another node along the pipeline. The second test 312 

case is more realistic; in this scenario, two sensors are placed along the pipeline, and the head 313 

at both ends of the pipe is estimated in real time. Such situations can naturally occur in a 314 

network, and by focusing on an isolated pipe, this approach can be effectively applied. 315 

Test case 1: Estimating unknown demand 316 
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This test case demonstrates unknown boundary and state estimation for a single pipeline. The 317 

pipeline configuration is shown in Fig. 2.  318 

 
Fig. 2. Pipeline configuration for Test Case 1. The wave speed is 1000 m/s and friction 

factor is 0.02. 

The pipeline consists of three nodes with equal spacing, and the demand at each node is 319 

specified in the figure. A pressure sensor is installed at node 2, while an uncertainty is 320 

introduced in the demand extracted at node 1. The system is initially in steady state, and at the 321 

first step, it is linearized to obtain a state-space model for observer design. The state space 322 

model for this test has been obtained as below:  323 

(34) 

𝑑

𝑑𝑡

[
 
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝑞4

ℎ1

ℎ2

ℎ3]
 
 
 
 
 
 

=

[
 
 
 
 
 
 
−0.0876 0 0 0 −0.0014 0 0

0 −0.0499 0 0 0.0014 −0.0014 0
0 0 −0.0405 0 0 0.0014 −0.0014
0 0 0 −0.0357 0 0 0.0014

2884.2 −2884.2 0 0 0 0 0
0 2884.2 −2884.2 0 0 0 0
0 0 2884.2 −2884.2 0 0 0 ]

 
 
 
 
 
 

×

[
 
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝑞4

ℎ1

ℎ2

ℎ3]
 
 
 
 
 
 

+

[
 
 
 
 
 
 

0 0 0 0.0014 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −0.0014

−2884.2 0 0 0 0
0 −2884.2 0 0 0
0 0 −2884.2 0 0 ]

 
 
 
 
 
 

×

[
 
 
 
 
𝑄1

𝑄2

𝑄3

ℎ𝑅1

ℎ𝑅2]
 
 
 
 

+

[
 
 
 
 
 
 

0
0
0
0

−2884.2
0
0 ]

 
 
 
 
 
 

𝑤 

𝑦 = [0 0 0 0 0 1 0] ×

[
 
 
 
 
 
 
𝑞1

𝑞2

𝑞3

𝑞4

ℎ1

ℎ2

ℎ3]
 
 
 
 
 
 

 

By using the “tzero” function in MATLAB, it can be easily verified that the system is minimum 324 

phase and can be applied to the proposed method. This property is physically justified by the 325 

fact that hydraulic pipeline systems are dissipative due to friction and contain no external 326 

energy sources, making them inherently passive and stable. As a result, the states that are not 327 
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directly influenced by inputs or outputs do not lead to instability. Based on the state-space 328 

representation, the uncertainty acts in the same input channel as the known demand (𝑄1). The 329 

rank of the CD matrix is zero, while the rank of the D matrix is one, indicating that the necessary 330 

condition for directly applying a SMO is not satisfied. To address this, an auxiliary output is 331 

introduced to meet the observability condition.  332 

Using Eq. (15), the relative degree of the output is determined as 2, meaning:  333 

(35) 

𝑪𝑫 = 0  

𝑪𝑨𝑫 = 0  

𝑪𝑨𝟐𝑫 ≠ 0             

This result indicates that two auxiliary outputs are required. A HGO is designed to estimate 334 

these outputs, with design parameters chosen as  𝜀 = 0.001 and 𝛼𝑎,1,..4 = [1, 9, 26, 24]. The 335 

coefficients of the characteristic polynomial (𝛼𝑎,1,..4) have been chosen such that all roots lie 336 

in the left half-plane. The SMO is then designed following the approach detailed in [37], and 337 

the observer gain matrices are computed accordingly: 338 

(36) 𝑮𝑛 =

[
 
 
 
 
 
 

0 0 0
−3.12𝑒3 −15.63 1.13−13

−3.12−3 −19.63 1.7−13

0 0 0
918.4 5.1861 −2884.2
1.154 0 0
918.4 5.1861 0 ]

 
 
 
 
 
 

       𝑮𝑙 =

[
 
 
 
 
 
 

1.1−4 −6.2−7 −3.4−4

−27.59 −0.139 −3.4−4

−27.59 −0.175 0
1.1−4 6.23−7 0
788.8 3.954 26
102 01 0

−772.5 −4.86 0 ]
 
 
 
 
 
 

 

For the SMO design, the uncertainty must be bounded, and the 𝜌  parameter should be set larger 339 

than the upper bound of the uncertainty. In this test case, 𝜌 = 100 is chosen, ensuring fast 340 

rejection of uncertainties. There is no strict limitation on the selection of 𝜌, as long as it is 341 

sufficiently large. Fig. 3 presents the MATLAB Simulink implementation of the proposed 342 

approach.  343 
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Fig. 3. Simulink model for Test Case 1. 

The true disturbance acting on the system is generated as a summation of three sine waves with 344 

amplitudes of 10, 5, and 2 L/s and frequencies of 0.1, 0.15, and 0.18 Hz, respectively. The 345 

disturbance can be any arbitrary signal. Fig. 4a compares the true and estimated disturbances, 346 

showing a close match between the estimated and actual values. Fig. 4b presents the absolute 347 

estimation errors, which remain small. Additionally, the observer demonstrates fast 348 

convergence, reaching the actual disturbance within less than one second.  349 

 350 

 
 

Fig. 4. Disturbance estimation results: (a) comparison between the true and estimated 

disturbances, and (b) the absolute estimation error over time 

 

Fig. 5 illustrates the error between the estimated auxiliary outputs (computed by HGO) and 351 

their actual values. It is observed that 𝑦𝑎2, the first auxiliary output (i.e., the first derivative of 352 

the measured output), is estimated more accurately than 𝑦𝑎3, which represents the second 353 
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derivative. Nevertheless, the overall estimation errors for both remain small. As the order of 354 

auxiliary outputs increases, estimation accuracy slightly decreases but remains within an 355 

acceptable range.  356 

 

Fig. 5. Auxiliary output estimation error. 

The SMO observer is also capable of estimating the system states, as shown in Fig. 6. In this 357 

figure, the internal pressure head from both the estimation and the true simulation is shown, 358 

demonstrating a close match between the two. Since the system is linearized, these values 359 

represent the head change relative to the fixed point. During the first 80 seconds after applying 360 

the disturbance, the system experiences a transient response before transitioning to a steady 361 

oscillatory state. 362 
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Fig. 6. Comparison of true and estimated internal pressure head state variables for Test 

Case 1. 

Test Case 2: Estimating unknown heads 363 

The pipeline configuration and parameters for this test case remain the same as in Test Case 1. 364 

However, in this case, two uncertainties exist at the boundary heads, and two pressure sensors 365 

are placed at nodes 1 and 3. This scenario is more realistic and can happen in pipeline networks, 366 

where head measurements may be available at some locations, but the heads at other boundaries 367 

remain unknown and require estimation.  368 

 

Fig. 7. Pipeline configuration for Test Case 2. The wave speed is 1000 m/s and friction 

factor is 0.02. 

For the state-space model, the A and B matrices remain unchanged from Test Case 1, while the 369 

D and C has been obtained as below:  370 

𝑫 =

[
 
 
 
 
 
 
0.0014 0

0 0
0 0
0 −0.0014
0 0
0 0
0 0 ]

 
 
 
 
 
 

      𝑪 = [
𝑪1

𝑪2
] = [

0 0 0 0 1 0 0
0 0 0 0 0 0 1

] 371 

The rank of the 𝐶𝐷 matrix is zero, confirming that auxiliary outputs are required. Using Eq. 372 

(15), the relative degree for each output is computed as 1, meaning only one auxiliary output 373 

per sensor is required. The augmented output is obtained in the following format: 374 

𝒚𝑎 = 𝑪𝑎𝒙 = [

𝑪1

𝑪1𝑨

𝑪2

𝑪2𝑨

] 𝒙 375 
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Two HGOs are designed with parameters 𝜀 = 0.001 and 𝛼𝑎,1:2 = [1,3] to estimate the 376 

auxiliary outputs. Two uncertainties are introduced at both boundary heads, simulating real-377 

world conditions where boundary conditions are not precisely known. 378 

After applying the method, Fig. 8 shows the estimation errors for the auxiliary outputs 𝑦𝑎1,2 379 

and 𝑦𝑎2,2 which correspond to the first derivatives of the first and second measured output 380 

signals, respectively. The errors are on the order of 10−3. The error can be further reduced by 381 

decreasing 𝜀.  382 

 

Fig. 8. Auxiliary output estimation error. 

The estimated auxiliary outputs are then fed into the SMO, which provides the disturbance and 383 

state estimations, as shown in Fig. 9 and Fig. 10. Both disturbances are estimated with high 384 

accuracy, closely tracking the actual disturbances. Alongside disturbance estimation, the 385 

system states are also successfully reconstructed. As shown in Fig. 10, the estimated pressure 386 

at internal nodes closely matches the results from the true simulation.  387 
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Fig. 9. Disturbance estimation results for Test Case 1: (a) comparison of true and estimated 

disturbances, and (b) absolute estimation errors. 

 388 

 

Fig. 10. True and estimated internal pressure head state variables for Test Case 2. 

Experimental Verification 389 

A laboratory experiment was conducted to demonstrate the practical performance of the 390 

proposed estimation method. The setup is located in the Robin Hydraulics Laboratory at the 391 

University of Adelaide. The layout of the experimental system is shown in Fig. 11, consisting 392 

of two tanks positioned at either end of a copper pipeline. The system includes two internal 393 

measurement points along the pipeline and two additional measurement points near the 394 

boundary tanks, which closely represent the head at the tank boundaries. 395 
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Fig. 11. Experimantal pipeline setup. 

In this experiment, both tanks were initially pressurized to 10 meters of head, and the pressure 396 

was held constant for a sufficient duration to ensure steady-state conditions. Under this 397 

operating point, the flow in the pipe is effectively zero, and all four pressure transducers report 398 

the same value. To induce a transient event, the pressure at Tank 1 was varied arbitrarily. As a 399 

result, the generated flow caused the pressure at Tank 2 to gradually change over time. These 400 

boundary pressures can be considered as unknown inputs. 401 

The objective of the experiment was to use the pressure readings from the two internal 402 

measurement points along the pipeline to estimate the unknown boundary conditions, 403 

following the same estimation strategy applied in Test Case 2 using a SMO. The SMO was 404 

designed to reconstruct the head at both boundaries in real time. 405 

 



25 

 

 

Fig. 12. Experimental results of boundary pressure estimation. (a) Measured and estimated 

pressures at PT1 and PT4 (tanks), with PT2 and PT3 shown for reference. (b) Absolute 

estimation errors for PT1 and PT4. 

Fig. 12(a) presents the comparison between the measured and estimated boundary pressures. It 406 

is important to note that in any experimental validation, discrepancies can exist between the 407 

mathematical model and the physical system. In this case, the EWCM is used as an approximate 408 

representation of the real pipeline behavior. Therefore, part of the observed error may be due 409 

to modeling limitations rather than the estimation process itself. Despite this, the observer was 410 

able to track arbitrary changes at the boundaries with an error of less than 10%, demonstrating 411 

good estimation performance. The corresponding absolute estimation error is also shown in 412 

Fig. 12b. Several sources of uncertainty contribute to this error. First, there is inherent 413 

uncertainty in parameters such as wave speed and friction factor. Second, the estimation is 414 

based on a linearized approximation of the system, while the real dynamics remain nonlinear. 415 

Third, measurement noise can affect the accuracy of auxiliary output estimation. Overall, the 416 

results confirm that the proposed estimation method remains effective under realistic model 417 

uncertainty and sensor conditions.  418 

Fig. 13 shows the estimated flow rate at one section of the pipe over time. As the pipe is 419 

relatively short and has no discharge along its length, the flow rate is uniform across all sections 420 

at any given time; therefore, a single representative section is shown. This estimation approach 421 
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uses only pressure readings to infer the flow rate, eliminating the need for direct flow 422 

measurements, which are typically more expensive and difficult to implement in practice. 423 

 

Fig. 13. Estimated flow rate over time for the experimental pipeline. 

Conclusion 424 

This paper presents a state estimation and uncertainty reconstruction framework for pressurized 425 

pipeline systems. The proposed method addresses the limitation imposed by the observer 426 

matching condition by introducing auxiliary outputs generated via a HGO. These outputs are 427 

then used within a SMO to reconstruct both system states and unknown boundary conditions 428 

in real time. The framework has been evaluated through numerical simulations and 429 

experimentally validated using laboratory data, demonstrating its ability to estimate slowly 430 

varying transients with reasonable accuracy despite model uncertainties and measurement 431 

noise. 432 

This approach offers a practical solution for real-time monitoring and control in systems where 433 

boundary conditions are not fully observed. In particular, it holds promise for application in 434 

water distribution networks, where multiple sources of uncertainty, such as unmeasured 435 

demands, pressure fluctuations, and operational changes, are common. By enabling real-time 436 

estimation without relying on optimization routines or statistical noise models, the proposed 437 

method provides a computationally efficient alternative to traditional techniques. 438 
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To extend this approach to pipeline networks, further development is required. As networks 439 

introduce greater complexity and interconnectivity, the number of necessary auxiliary outputs 440 

is expected to increase, potentially requiring more advanced observer structures. Based on the 441 

framework developed in this study, future research can also explore distributed observer 442 

designs that are better suited to large-scale water distribution networks with decentralized 443 

sensing and control. Future work will focus on scaling the method to larger networks, assessing 444 

robustness to parameter uncertainties, and integrating the observer into active control schemes 445 

for fault detection and operational optimization.   446 
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