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Abstract

Accurate estimation of boundary conditions in pressurized pipelines is essential for effective
monitoring, control, and fault detection. However, boundary variables such as unmeasured
demands and unknown pressure heads are often unavailable, introducing uncertainty into
hydraulic models. This study presents a real-time observer-based framework for joint
estimation of system states and unknown boundary inputs. The approach employs the Elastic
Water Column Model (EWCM) to derive a linear time-invariant (LTI) representation
compatible with observer design. Because the system does not satisfy the observer matching
condition, auxiliary outputs are generated to transform it into a matched form. These outputs
are first estimated using a High-Gain Observer (HGO) and then incorporated into a Sliding

Mode Observer (SMO) for reconstructing both states and boundary conditions.


mailto:morteza.imani@adelaide.edu.au
mailto:aaron.zecchin@adelaide.edu.au
mailto:w.zeng@adelaide.edu.au
mailto:martin.lambert@adelaide.edu.au

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

The framework is validated through two numerical case studies and laboratory experiments
involving transient pipeline flows. Results demonstrate accurate real-time estimation of
unknown boundary conditions using only internal pressure data. Compared with batch-based
methods such as Expectation—Maximization and Weighted Least Squares, the proposed
observer-based strategy provides a computationally efficient and real-time alternative for
hydraulic system monitoring.

Keywords: Dynamic state estimation, Unknown boundary conditions, Elastic water column

model, High-gain observer, Sliding mode observer.

Introduction

The accurate estimation of system states and unknown inputs is a fundamental challenge in
many engineering applications, including fluid mechanics, control systems, and structural
health monitoring [1-3]. In pressurized pipeline systems, this challenge is particularly
prominent due to the inherent limitations in sensor coverage and the dynamic interactions
between boundary conditions and internal states. Inflows and outflows are often unmonitored
or only partially observed, and pressure sensors may be deployed sparsely due to cost or
accessibility constraints. These factors introduce uncertainty into hydraulic models, reducing
their effectiveness for monitoring, fault detection, and real-time control [4, 5]. In practical
settings, boundary conditions such as pressure variations at reservoirs, connections of sub-
networks to broader systems or unmeasured consumer demands are not always directly
observable. For example, while a pipeline may be equipped with internal pressure sensors, the
influence of changes at the boundaries may not be reflected in the measured outputs in a

straightforward manner. Moreover, pipeline systems are subject to external disturbances and
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varying operational regimes, which make it difficult to maintain accurate state awareness using
traditional modeling techniques.

Traditional approaches to handling these uncertainties often rely on optimization-based
techniques such as Expectation-Maximization (EM), Weighted Least Squares (WLS), and
Inverse Transient Analysis (ITA) [6-10]. These methods typically operate in batch mode,
requiring historical data and iterative parameter tuning. While suitable for offline analysis, their
high computational demands and dependency on prior data limit their application in real-time
monitoring or control environments. Moreover, these approaches often assume that
uncertainties are fixed over time or follow specific statistical models, which may not hold under
dynamically changing operating conditions.

These limitations motivate the development of an approach capable of real-time estimation
using observer-based methods rather than iterative optimization. A promising alternative arises
from state observers, which reconstruct unmeasured states and inputs dynamically from limited
measurements. A class of such observers, known as UIOs, has been developed to estimate
internal states while decoupling the effect of unknown inputs [11-14]. UIOs are designed such
that the estimation error is insensitive to unmeasured disturbances, allowing for reliable state
reconstruction. Depending on the application, UIOs can be implemented in centralized or
distributed forms. In centralized implementations, all measurements are processed together to
estimate the complete system state. In contrast, distributed observers achieve estimation
cooperatively across interconnected subsystems, each using local information and limited data
exchange [15]. Such designs are particularly relevant for large-scale systems, as demonstrated
in the distributed interval observer and distributed UIO formulations presented in[16]. These
studies show how observer-based estimation can be extended to networked or multi-agent

systems.
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Other developments have aimed to improve convergence speed or robustness. For instance,
prescribed-time UlOs for descriptor systems [17] and their distributed counterparts [18]
guarantee convergence within a user-specified time window using structure decomposition and
prescribed-time convergence tools. These contributions broaden applicability to descriptor
(singular) and multi-agent systems where strict timing is critical. However, such prescribed-
time designs are primarily relevant to aerospace or robotic systems, whereas hydraulic systems
evolve on slower time scales, and convergence within a fixed time window is generally
unnecessary.

Despite their versatility, classical UIOs require two strict mathematical conditions: the
observer matching condition (OMC) and the minimum-phase condition [19, 20]. The OMC
ensures that the unknown input affects the system through the same channel as the measured
outputs. In hydraulic terms, this means that if an unknown input (e.g., a leak or unmeasured
demand) appears in the continuity equation for a given node, a pressure measurement must also
be available at that same location. This co-location guarantees that the influence of the
unknown input is reflected in the output, allowing the observer to infer it. When this condition
is satisfied, a UIO can be designed directly. However, in most practical hydraulic systems,
sensors are not co-located with uncertain boundaries, producing unmatched conditions that
violate the OMC and make direct observer design infeasible.

This mismatch renders the estimation problem mathematically underdetermined, with fewer
independent equations than unknowns. To overcome this, researchers have developed various
strategies to relax or bypass the OMC and minimum-phase requirements. A key line of work,
pioneered by Kalsi et al. and Floquet et al., introduced the use of differentiated auxiliary outputs
and a two-stage structure combining HGOs and SMOs [21-23]. The approach differentiates
measured signals until the unknown inputs appear explicitly in the output equations, thereby

transforming the system into a form that satisfies the matching condition. Because these
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differentiated outputs are not directly measurable, they must first be estimated by an HGO,
after which an SMO reconstructs both the system states and unknown inputs. This two-stage
strategy effectively extends UIO applicability to systems that do not naturally meet the OMC,
and similar two-observer frameworks have also been employed for sensor fault estimation and
fault-tolerant control in nonlinear systems, such as the 3-DOF helicopter study by Wang and
Tan [24], where a combined HGO—SMO structure enabled accurate fault reconstruction despite
unmatched and non-minimum-phase dynamics.

Subsequent studies have also addressed the minimum-phase condition, developing
formulations that enable observer design even in non-minimum-phase or nonlinear settings
[25]. Parallel advances have expanded UIO-related concepts to enhance robustness against
modeling uncertainties and disturbances. For example, interval-based observer designs [16, 26,
27] have been proposed to provide guaranteed bounds on state estimates and improve
robustness to model uncertainty. In a different direction, the left-invertibility formulation by
Zhang and Zhu [28] introduced a constructive method to augment measured outputs so that the
OMC can be satisfied even when auxiliary-output approaches fail. Their method is particularly
useful when no relative-degree-based augmentation can recover the required rank condition.
These theoretical developments have established a strong mathematical foundation for
extending observer-based estimation to broader classes of systems.

Despite this progress, most of the above works have been developed in aerospace, robotic,
and electrical domains, where the physical processes and measurement architectures differ
fundamentally from those of hydraulic systems. To date, no systematic framework has been
established for applying UIO or SMO concepts to pressurized pipelines, even though such
systems naturally exhibit unmatched boundary conditions, sparse sensor deployment, and

uncertain disturbances.
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The present study addresses this gap by introducing a real-time observer-based framework
for hydraulic pipelines. A linear state-space model is first derived using the EWCM, which
reformulates the transient flow equations into a structure suitable for observer design. Auxiliary
outputs are generated using a HGO, and a SMO is applied to jointly estimate internal states and
unknown boundary conditions. The use of HGOs enables estimation of unmeasured variables
without requiring explicit statistical noise models, while SMOs provide robustness against
bounded disturbances and modeling errors.

The novelty of this work lies in bridging the gap between established observer theory and
its application to hydraulic pipelines. Specifically, the contributions are: (i) the development of
a linear state-space formulation of pipelines using the EWCM that is suitable for observer
design; (i1) the integration of HGOs and SMOs in a two-stage structure to overcome the OMC
and enable real-time estimation; and (iii) the first experimental demonstration of observer-
based reconstruction of unknown boundary conditions in pressurized pipelines. To evaluate the
performance of the proposed framework, two numerical case studies have been conducted. The
first case involves the estimation of an unmeasured demand based on internal pressure data,
reflecting a common situation in hydraulic monitoring where unknow withdrawals occur at
certain locations. The second case concerns the estimation of unknown boundary pressures
using only internal sensor data, a scenario highly relevant to real-time control. In addition to
simulations, experimental validation has been performed on a laboratory pipeline setup where
two boundary heads has been estimated by the purposed approach. The remainder of this paper
is structured as follows. Section 2 introduces the EWCM and its discretization, leading to a
state-space formulation. Section 3 describes the observer design, detailing the use of HGOs for
auxiliary output estimation and SMOs for joint state and unknown input estimation. Section 4
presents the results from two numerical simulations and Section 5 presents the experimental

validation. Finally, Section 6 concludes the paper and outlines directions for future research,
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including potential extensions to larger pipeline networks with multiple unmeasured boundary

conditions.

Elastic Water Column Model

The behavior of transient flow in pressurized pipeline systems is governed by the one-
dimensional partial differential equations of momentum and continuity. These equations
describe the relationship between pressure head, flow rate, and system dynamics, incorporating

the effects of fluid compressibility and pipe elasticity. The governing equations are expressed

as [29]:

oh 1 dq fqlql

t ety = (1)
ox gAIt 2gDA

gAOh 0q (2)
a? ot * ox 0

where 4 represents the piezometric head, ¢ is the volumetric flow rate, g is the gravitational
acceleration, A is the internal cross-sectional area of the pipe, D is the pipe diameter, and f'is
the Darcy-Weisbach friction factor. These equations provide a continuous representation of
transient flow, capturing wave propagation effects due to the compressibility of water and
elasticity of pipes. For practical applications, a pipeline section of length [ is often analyzed
under the assumption of spatially uniform conditions, approximating the spatial derivatives as
finite differences (0h/0x = Ah/l and dq/0x = Aq/l). This results in a discrete form of the

transient flow equations [30]:

dq
Ah = —L—~ Rqlq] 3)
oh 4)
Aq = —CE



160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

where L is the hydraulic inductance (L = g%q), C is the hydraulic capacitance (C = ‘i—il), and

fl
2gDA?

R is the hydraulic resistance (R = ) The electrical equivalent circuit is often used to

approximate hydraulic behavior, where the pipe segment is modeled using a n-type circuit

representation [31, 32]. Fig. 1 shows the electrical equivalent circuit for two segments of a
pipe.

Qi-1 Qi Qis1

Litq Rjt1
Y YA
W\

hj+ 1u

C; ,'——"'_“"n C: "_ ¥
1+1/2 qj+1 }+1/2T Qj+1,u
A

Fig. 1. Electrical Equivalent Circuits for two segments of a pipe.

To capture higher frequencies, the pipeline can be divided into segments. The first two nodes
are designated as head boundary nodes, while the remaining nodes serve as internal nodes.
External demands can be considered at the locations of internal nodes. For a structured

mathematical formulation, the nodal head vector is partitioned as:

h
h= ] ©)
where h; represents the heads at internal nodes, and hy corresponds to the heads at boundary

nodes. Using this partitioning, the vector of head differences across each pipeline segment is

expressed as:

M;]'[h,
= 6
= o] L ©
Where T operator represents the transpose operator, and the matrices M; and My are defined

as:
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1x(ng—1
M; e RO, My =31 ifj=i+1 Mg, = (i (=) 7

) _ -1
0 otherwise (1x(ns-1))
Following the formulation in [31], the demand vector @ and the hydraulic parameter matrices
L, R, and C (all diagonal) are incorporated into the momentum and continuity equations

governing the pipeline system. The momentum equation is given by:

d
151 = —Rdiag(lql}q + M]h, + M}h, ®)

where |q| represents the element-wise absolute value of the flow rate vector (hereon, the
absolute value function of a vector or matrix represents an elementwise operation). The

continuity. The continuity equation at internal nodes is expressed as:

1 dh
(3Milc) St =Miq + @ ©)
Eq. (14) and (15) constitute a system of nonlinear ODEs for transient simulation of a pipeline.

This formulation has been validated using the Method of Characteristics, and further details

can be found in [31].

Nonlinear System Representation

Eq. (8) and Eq. (9) can be expressed in a compact state-space form. To achieve this, the state
vector x is defined to include both the flow rates through the pipes and the hydraulic heads at

the internal nodes:

q
=[] o
The inputs to the system are the hydraulic heads at the boundary nodes and the external

demands applied at internal locations:

-y
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In this formulation, the system's nonlinear dynamics can be expressed as:

x = f(x,u) (12)
This equation describes how the state vector x evolves over time as a nonlinear function
f(x,u) of the state and the inputs. Solving this equation provides the complete transient
response of the pipeline to changes in external demands or boundary conditions, capturing both

flow rates and hydraulic heads along the system.

Linearization and State-Space Representation

To apply observer-based estimation techniques, the nonlinear EWCM model needs to be
expressed in a LTI form. Since EWCM is inherently nonlinear, linearization is performed
around a steady-state operating point to obtain a state-space representation suitable for real-
time estimation. This is achieved by expanding the system dynamics f(x,u) in a first-order
Taylor series around the equilibrium point x,, u, leading to the linearized state-space
representation [33]:

x =Ax + Bu (13)
Here, A and B are the Jacobian matrices of partial derivatives with respect to the state and input,
respectively. The system matrix A characterizes how flow rates and hydraulic heads evolve in
response to perturbations in the state, while the input matrix B describes how external inputs,
such as boundary conditions or demand variations, influence the system. The structure of A
depends on the spatial discretization of the pipeline and its hydraulic properties. In practical
applications, the dynamics in Eq. (13) are also affected by modeling uncertainty, sensor noise,
and unmeasured boundary disturbances. These effects are collectively represented by an
additional input term Dw, where w denotes unknown or unmeasured inputs such as fluctuating
reservoir heads or demand variations. The linearized model can therefore be expressed as

x = Ax + Bu + Dw, which serves as the basis for unknown-input observer design.

10



212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

Observer based state estimation

In many real-world dynamic systems, including single pipelines, certain inputs remain
unknown or unmeasurable due to sensor limitations, external disturbances, or uncertain
boundary conditions. Estimating both the internal states and these unknown inputs is crucial
for effective monitoring and control. UIO provide a mathematical framework to estimate
system states while accounting for such unknown inputs. In this context, the UIO is not itself
the physical quantity being estimated, but rather the estimation mechanism used to reconstruct
both the internal states x and the unknown boundary conditions, which appear mathematically

as components of the disturbance vector w.

Classical UIO and the Observer Matching Condition

A LTI system with unknown inputs can be generally expressed as[34]:
x = Ax + Bu + Dw
(14)
y=Cx

where the state vector x consists of the system’s flow rates and hydraulic heads. The number
of pipes in the network is denoted by n,,, while the number of internal nodes is represented by
n;. As a result, x is a column vector of dimension (np + nl-) X 1, capturing the complete
hydraulic state of the pipeline system. The measured output vector y represents the available
sensor readings, such as pressure measurements at specific locations within the network. The
number of sensors deployed determines the dimension of y, which is p.

The known input vector u includes control inputs, such as boundary conditions at monitored
locations, reservoir heads, or external demands applied at specific nodes. The dimension of

known inputs is m;. The unknown input vector w accounts for disturbances and unmeasured

11
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boundary conditions, and the number of unknown inputs is m,. A, B, C, D are known fixed
matrices of appropriate dimension.

An UIO is designed to estimate x independently of w, ensuring that the state estimation error
is not affected by the unknown inputs. However, a fundamental requirement for designing a
classical UIO is the observer matching condition, which states that the unknown input w must
appear in the same subspace as the measured output y. Mathematically, this condition is:

rank{CD} = rank{D} = m,

which ensures that the unknown input does not introduce an unobservable mode in the system.
When this condition is not satisfied, the unknown input is said to be unmatched, meaning it
does not directly appear in the measured output channel. As a result, a classical UIO cannot be
used in such cases. In hydraulic systems, unknown boundary conditions (such as unmeasured
heads, leaks, or demand variations) often do not directly affect the measured outputs in a way
that satisfies the observer matching condition and rank{CD} < m,. This creates a fundamental

challenge in real-time state estimation.

To address this limitation, an auxiliary output approach is introduced, which transforms the
system into a form where the unknown inputs can be reconstructed. A common strategy to
circumvent the observer matching condition is to augment the output space by generating
auxiliary outputs that explicitly incorporate the influence of the unknown inputs. This is
achieved by differentiating the output until the unknown input explicitly appears, effectively
increasing the system’s observability. If the system does not satisfy the classical matching
condition, the relative degree r; of each output y; with respect to the unknown input w is
defined as the smallest integer such that [22]:

C;A*D =0 forallk <r; —1

(15)
C,A7'D # 0

12
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This means that the unknown input w only appears in the 7; — th derivative of the output y ;.
If all system outputs have a relative degree of one, the classical UIO can be directly applied.
However, in cases where some outputs have a higher relative degree, additional differentiation
is required to reveal the unknown inputs. To construct an observer that accounts for unmatched

unknown inputs, an augmented output vector is introduced:

V. =Cy,x C,= : (16)

| C pAsz_l_
where the integers 1 < y; < r; are such that rank{C,D} = rank{D}, while minimizing the
total sum of y; across all outputs. Along with the matching condition, another requirement is
that the system should be minimum phase, and the invariant zeros of the triple {4, C, D} must
lie in the left half-plane. Floquet and Bartot also proved that the triples {4, C, D} and {A, C,, D}
have the same invariant zeros, and if the main system is minimum phase, the system with the

augmented output will also be minimum phase [21].

High-Gain Observers for Auxiliary Output Estimation

Before designing the SMO for estimating system states and unknown inputs, the auxiliary

outputs must first be estimated and provided as inputs to the SMO. To achieve this, let y;; =

c;A/"'xfori=1,..,pandj = 1,...,7; leading to the auxiliary output vector representation:

T
Yo=[Yer - Yip|,whereyy = Cox = [Yair - Yaiy]".
By differentiating y,; with respect to time, the following expression is obtained:

Yai = Cal-,\'f = Cal-Ax + Bu + CaiDW (17)
Introducing the following matrices:

13
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0

vi—1 YiXVi C— |Yri-Dx1 Yi - B =
]ER ) El_[ 1 ]ER ﬁHl_CaLB_ CiAyi—ZB (18)

CiAYi_lB

-]

Eq. (17) can then be rewritten as:

Yai = Aiyai + Eifi(x,w) + Hu (19)
where f;(x,w) = ¢;A""1(Ax + Dw). By considering y;; = y; as the output equation, the

state space representation for y,; is given by:

{yai =Ayq + Ei_fi(x: w) + Hu o)
Yi1 = CiYai
where ¢; =[1 0 .. 0] € RYi. With this formulation, the system is now suitable for the

design of a HGO. The following observer is constructed to estimate y;:

Yhi = Niypi + Hu + L (¥ — Yni) (21)

, T
%ai1 “awi]
< _gyi ’

where yp; = [Yair - Yaiy; ]'. The gain vector l; is defined as I; = [
where £€(0,1) is a design parameter and @g;;,j =1,..,¥;, are selected such that the
characteristic polynomial St + ag;,SYi71 + -+ + ®aiy;-1S + Agiy, = 0, has all roots in the

left half-plane, ensuring system stability [23, 35]. For the convergence analysis, the difference

between the actual and estimated auxiliary outputs is defined as:

€y =Yai — Yni (22)
In order to simplify the analysis, the error is scaled according to:
Yij = Yij

Gi="g . J=Lem (23)

The scaled error dynamics take the form:

24)

T
. — _ —-a,; I, _
e¢; = A,{; + €E;fi(x,w) withA, = I “ Vi 1]

~Qaiy;  Oy1

14
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Where ag; = [®ai1 - @ai(y;-1] is Hurwitz and f; (x, w) is bounded. Since A; is Hurwitz,
the dynamics are exponentially stable, while the perturbation term is of order €. By the result

in [36], there exist positive constants 8; > 0 and finite time T;(¢) such that:

IGON < Bie, t =to +Ti(e), lime,Ti(e) (25)

From Eq. (23) it follows that

Yai — Yni = Di{; (26)

Where D; = diag[e¥i™1, %172, .. 1]. Let

Y = [Yhi 0¥, D = diag[Dy, ... D,], ¢ =[¢L,... 35 27)

Thus, y, — ¥, = D{. Since the Euclidean norm of D is unity, i.e. ||D|| = 1, it follows that:

1¥a = ynll < Be (28)

With g = (Zle i2)1/2. Therefore, after a short transient, the auxiliary outputs generated by

the high-gain observer converge to the true derivatives with an error proportional to €.

Sliding-mode observer construction

Once the auxiliary outputs are estimated, a SMO can be designed to estimate the system states
and unknown inputs. The sliding mode observer follows the form [34]:

X =AX+ Bu+ G,(y, — C,%) + G,v, (29)
where G; and G,, serve as observer gains, while v, is an injection signal that is designed based

on the output estimation error:

—p Pz (ya - Cajc\)
Ve = ||P2()’a - Caf)”
0 otherwise

if(y, —Cyx) #0 (30)

The parameter p is a positive constant chosen to exceed the upper bound w. The symmetric

positive definite matrix P, is defined in [20] and further detailed in Chapter 6 of [19]. This
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signal ensures that the system reaches a sliding motion within the state estimation error space
in finite time. The primary goal is to guarantee that the state estimation error, defined as e =
x — X, remains asymptotically stable and unaffected by the unknown input w once the sliding
motion (sliding manifold s = C,e = 0) is established. The estimation error dynamics can be
expressed as:

e=A4e +Dw—G,(y, — C,X) — G,v, (31)
During the sliding motion, the following condition holds:

s=C,e=C,(A-G,Ce+C,Dw—-C,G,v. =0 (32)
Since the estimation error tends to zero (e — 0), the equivalent output rejection term satisfies
C.G,(v)eq = CoDw . This implies that once sliding motion is established, the equivalent
output rejection term becomes equal to the effect of the unknown input. Given that C,D is a
full-rank matrix, an approximation w of the unknown input w can be obtained as[22]:

w = ((CaD)TCaD)_l(CaD)TCaGn(vc)eq (33)

Numerical simulation

In this section, to demonstrate the capability of the approach, two test cases have been
considered. In the first test case, an unknown demand is estimated in real time based on
information from a single sensor located at another node along the pipeline. The second test
case is more realistic; in this scenario, two sensors are placed along the pipeline, and the head
at both ends of the pipe is estimated in real time. Such situations can naturally occur in a

network, and by focusing on an isolated pipe, this approach can be effectively applied.

Test case 1: Estimating unknown demand

16
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This test case demonstrates unknown boundary and state estimation for a single pipeline. The

pipeline configuration is shown in Fig. 2.

hri ,
2000m ke
A <
3 / A
45 m 3 q=929L/s Node 1 Node 2 Node 3 V03 m
| = 40 m
v ' ! A v
Qus) =40+ W Q,=101/s Q3 =5L/s

Fig. 2. Pipeline configuration for Test Case 1. The wave speed is 1000 m/s and friction
factor is 0.02.

The pipeline consists of three nodes with equal spacing, and the demand at each node is

specified in the figure. A pressure sensor is installed at node 2, while an uncertainty is

introduced in the demand extracted at node 1. The system is initially in steady state, and at the

first step, it is linearized to obtain a state-space model for observer design. The state space

model for this test has been obtained as below:

%y [-0.0876 0 0 0 —0.0014 0 0 1 @
[qz] | o —0.0499 0 0 0.0014 —0.0014 0 | |
el oo 0 —0.0405 0 0 0.0014 —0.0014| |[93]
Zlal=1 o 0 0 —0.0357 0 0 0.0014 |x|94| +
|hy| | 28842 —2884.2 0 0 0 0 o | Im
[th [ 0 28842 —2884.2 0 0 0 0 J [th
hs 0 0 28842 —2884.2 0 0 0 hs
0 0 0 0.0014 0 0
0 0 0 0 0 0, 0
0 0 0 0 0 Q2 0
0 0 0 0 —0.0014|x|Qs |+ o |w
—2884.2 0 0 0 0 hg:| |-2884.2
0 —2884.2 0 0 0 s 0
0 0 —2884.2 0 0 0
q1
q2
qs
y=[0 0 0 0 0 1 0]x|4
hq
h,
hs

(34)

By using the “#zero” function in MATLAB, it can be easily verified that the system is minimum

phase and can be applied to the proposed method. This property is physically justified by the

fact that hydraulic pipeline systems are dissipative due to friction and contain no external

energy sources, making them inherently passive and stable. As a result, the states that are not

17



328  directly influenced by inputs or outputs do not lead to instability. Based on the state-space
329  representation, the uncertainty acts in the same input channel as the known demand (Q;). The
330  rank of the CD matrix is zero, while the rank of the D matrix is one, indicating that the necessary
331  condition for directly applying a SMO is not satisfied. To address this, an auxiliary output is
332  introduced to meet the observability condition.
333  Using Eq. (15), the relative degree of the output is determined as 2, meaning:

CD=0

CAD =0 (35)

CA’D # 0
334  This result indicates that two auxiliary outputs are required. A HGO is designed to estimate
335  these outputs, with design parameters chosen as &€ = 0.001 and a4, 4, = [1,9,26,24]. The
336  coefficients of the characteristic polynomial (a4 4) have been chosen such that all roots lie
337  in the left half-plane. The SMO is then designed following the approach detailed in [37], and

338  the observer gain matrices are computed accordingly:

0 0 0 1174 —6277 —34*
—312¢3 —15.63 113713 2759 —0139 —3.4-*
31273 -1963 1.7°13 ~2759 —0175 0
G,=| o 0 0 G =|11* 6237 0 (36)
9184 51861 —2884.2 7888 3954 26
1154 0 0 102 01 0
9184 51861 0 —7725 —486 0

339  For the SMO design, the uncertainty must be bounded, and the p parameter should be set larger
340  than the upper bound of the uncertainty. In this test case, p = 100 is chosen, ensuring fast
341  rejection of uncertainties. There is no strict limitation on the selection of p, as long as it is
342 sufficiently large. Fig. 3 presents the MATLAB Simulink implementation of the proposed

343  approach.
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The true disturbance acting on the system is generated as a summation of three sine waves with

amplitudes of 10, 5, and 2 L/s and frequencies of 0.1, 0.15, and 0.18 Hz, respectively. The

disturbance can be any arbitrary signal. Fig. 4a compares the true and estimated disturbances,

showing a close match between the estimated and actual values. Fig. 4b presents the absolute

estimation errors, which remain small. Additionally, the observer demonstrates fast

convergence, reaching the actual disturbance within less than one second.
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Fig. 4. Disturbance estimation results: (a) comparison between the true and estimated

disturbances, and (b) the absolute estimation error over time
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Fig. 5 illustrates the error between the estimated auxiliary outputs (computed by HGO) and

their actual values. It is observed that y,,, the first auxiliary output (i.e., the first derivative of

the measured output), is estimated more accurately than y,;, which represents the second
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354  derivative. Nevertheless, the overall estimation errors for both remain small. As the order of
355 auxiliary outputs increases, estimation accuracy slightly decreases but remains within an

356  acceptable range.

0.015 T T T T T

<
=
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Fig. 5. Auxiliary output estimation error.

357 The SMO observer is also capable of estimating the system states, as shown in Fig. 6. In this
358  figure, the internal pressure head from both the estimation and the true simulation is shown,
359  demonstrating a close match between the two. Since the system is linearized, these values
360 represent the head change relative to the fixed point. During the first 80 seconds after applying
361  the disturbance, the system experiences a transient response before transitioning to a steady

362  oscillatory state.

Head Change (m)
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Fig. 6. Comparison of true and estimated internal pressure head state variables for Test
Case 1.

Test Case 2: Estimating unknown heads

The pipeline configuration and parameters for this test case remain the same as in Test Case 1.
However, in this case, two uncertainties exist at the boundary heads, and two pressure sensors
are placed at nodes 1 and 3. This scenario is more realistic and can happen in pipeline networks,
where head measurements may be available at some locations, but the heads at other boundaries

remain unknown and require estimation.

P (m) = 15+ wy hpa(Mm) =40 +w
R2 - 2

< 2000m
A
| A
| NOde? Node 2 Node? \Z 0.3m i
| - |
v q=929L/s QL = 401/ - A v
te ,=101L/s Qs =5L/s

Fig. 7. Pipeline configuration for Test Case 2. The wave speed is 1000 m/s and friction
factor is 0.02.

For the state-space model, the 4 and B matrices remain unchanged from Test Case 1, while the

D and C has been obtained as below:

0.0014
0

0
0
0 Cy 00 00100
_0'?)014 CZ[CZ]Z[O 0000 O 1]
0
0

[=NeNoNoNe)

The rank of the €D matrix is zero, confirming that auxiliary outputs are required. Using Eq.
(15), the relative degree for each output is computed as 1, meaning only one auxiliary output

per sensor is required. The augmented output is obtained in the following format:

Cl
C,A
CZ
C,A

Ya=Cox =
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Two HGOs are designed with parameters € = 0.001 and a4, = [1,3] to estimate the
auxiliary outputs. Two uncertainties are introduced at both boundary heads, simulating real-
world conditions where boundary conditions are not precisely known.

After applying the method, Fig. 8 shows the estimation errors for the auxiliary outputs ygq ,
and y,, , which correspond to the first derivatives of the first and second measured output
signals, respectively. The errors are on the order of 1073, The error can be further reduced by

decreasing €.

Y2
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-3
0 20 40 60 80 100 120 140 160 180 200
Time (s)

Fig. 8. Auxiliary output estimation error.

The estimated auxiliary outputs are then fed into the SMO, which provides the disturbance and
state estimations, as shown in Fig. 9 and Fig. 10. Both disturbances are estimated with high
accuracy, closely tracking the actual disturbances. Alongside disturbance estimation, the
system states are also successfully reconstructed. As shown in Fig. 10, the estimated pressure

at internal nodes closely matches the results from the true simulation.

22



388

389

390

391

392

393

394

395

[ T T
® -
1018 = et

101

oM

o)

Lasturown,

o
0 20 40 o 80 100 120 140 100 180 200 Time (3}
Time (s}

Fig. 9. Disturbance estimation results for Test Case 1: (a) comparison of true and estimated
disturbances, and (b) absolute estimation errors.
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Fig. 10. True and estimated internal pressure head state variables for Test Case 2.

Experimental Verification

A laboratory experiment was conducted to demonstrate the practical performance of the
proposed estimation method. The setup is located in the Robin Hydraulics Laboratory at the
University of Adelaide. The layout of the experimental system is shown in Fig. 11, consisting
of two tanks positioned at either end of a copper pipeline. The system includes two internal
measurement points along the pipeline and two additional measurement points near the

boundary tanks, which closely represent the head at the tank boundaries.
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Fig. 11. Experimantal pipeline setup.

In this experiment, both tanks were initially pressurized to 10 meters of head, and the pressure
was held constant for a sufficient duration to ensure steady-state conditions. Under this
operating point, the flow in the pipe is effectively zero, and all four pressure transducers report
the same value. To induce a transient event, the pressure at Tank 1 was varied arbitrarily. As a
result, the generated flow caused the pressure at Tank 2 to gradually change over time. These
boundary pressures can be considered as unknown inputs.

The objective of the experiment was to use the pressure readings from the two internal
measurement points along the pipeline to estimate the unknown boundary conditions,
following the same estimation strategy applied in Test Case 2 using a SMO. The SMO was

designed to reconstruct the head at both boundaries in real time.
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Fig. 12. Experimental results of boundary pressure estimation. (a) Measured and estimated
pressures at PT1 and PT4 (tanks), with PT2 and PT3 shown for reference. (b) Absolute
estimation errors for PT1 and PT4.

Fig. 12(a) presents the comparison between the measured and estimated boundary pressures. It
is important to note that in any experimental validation, discrepancies can exist between the
mathematical model and the physical system. In this case, the EWCM is used as an approximate
representation of the real pipeline behavior. Therefore, part of the observed error may be due
to modeling limitations rather than the estimation process itself. Despite this, the observer was
able to track arbitrary changes at the boundaries with an error of less than 10%, demonstrating
good estimation performance. The corresponding absolute estimation error is also shown in
Fig. 12b. Several sources of uncertainty contribute to this error. First, there is inherent
uncertainty in parameters such as wave speed and friction factor. Second, the estimation is
based on a linearized approximation of the system, while the real dynamics remain nonlinear.
Third, measurement noise can affect the accuracy of auxiliary output estimation. Overall, the
results confirm that the proposed estimation method remains effective under realistic model
uncertainty and sensor conditions.

Fig. 13 shows the estimated flow rate at one section of the pipe over time. As the pipe is
relatively short and has no discharge along its length, the flow rate is uniform across all sections

at any given time; therefore, a single representative section is shown. This estimation approach
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uses only pressure readings to infer the flow rate, eliminating the need for direct flow

measurements, which are typically more expensive and difficult to implement in practice.
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Fig. 13. Estimated flow rate over time for the experimental pipeline.

Conclusion

This paper presents a state estimation and uncertainty reconstruction framework for pressurized
pipeline systems. The proposed method addresses the limitation imposed by the observer
matching condition by introducing auxiliary outputs generated via a HGO. These outputs are
then used within a SMO to reconstruct both system states and unknown boundary conditions
in real time. The framework has been evaluated through numerical simulations and
experimentally validated using laboratory data, demonstrating its ability to estimate slowly
varying transients with reasonable accuracy despite model uncertainties and measurement
noise.

This approach offers a practical solution for real-time monitoring and control in systems where
boundary conditions are not fully observed. In particular, it holds promise for application in
water distribution networks, where multiple sources of uncertainty, such as unmeasured
demands, pressure fluctuations, and operational changes, are common. By enabling real-time
estimation without relying on optimization routines or statistical noise models, the proposed

method provides a computationally efficient alternative to traditional techniques.
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To extend this approach to pipeline networks, further development is required. As networks
introduce greater complexity and interconnectivity, the number of necessary auxiliary outputs
is expected to increase, potentially requiring more advanced observer structures. Based on the
framework developed in this study, future research can also explore distributed observer
designs that are better suited to large-scale water distribution networks with decentralized
sensing and control. Future work will focus on scaling the method to larger networks, assessing
robustness to parameter uncertainties, and integrating the observer into active control schemes

for fault detection and operational optimization.
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