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Abstract

This paper presents a modal and participation factor (PF) analysis of water distribution systems
(WDSs) using the elastic water column model (EWCM). Modal analysis, widely used in other
engineering fields, is adapted here to characterize the dynamic behavior of WDSs under
transient conditions. By linearizing the EWCM around an operating point, a state-space
representation is developed, enabling the extraction of natural modes via eigenvalue analysis.
These modes, defined by their frequencies and damping ratios, are validated through
comparison with the admittance matrix method (AMM) in the frequency domain. The study

introduces PF analysis to quantify how each state variable (nodal head or flow rate) contributes
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to each mode. This spatial information identifies critical locations that are more sensitive to
excitations and capable of amplifying transient responses. To verify the effectiveness of PF
analysis, time-domain simulations are conducted for three test cases, including a real-world
network (the New York tunnel system). The results confirm that exciting the system at high-
PF locations can generate significant transients, while low-PF locations produce minimal
responses. The analysis also reveals how resonance behavior in WDSs is spatially distributed,
enabling the identification of vulnerable areas where transients are amplified. This work
provides a unified time-domain framework for modal and PF analysis, contributing to

improved system monitoring, management, and fault detection in WDSs.

Keywords: Elastic water column model; Modal analysis; Participation factor; Hydraulic

transient.

Introduction

Modal analysis is a widely used engineering technique for determining the dynamic
characteristics of systems by identifying their natural frequencies, damping ratios, and mode
shapes. It is particularly valuable in fields such as mechanical and civil engineering, where it
helps predict how structures will respond to external forces, ensuring stability and identifying
potential vulnerabilities. Modal analysis also plays a key role in the study of inter-area

oscillations in power grids, helping to understand electro-mechanical oscillations (Dussaud

2015; Klein et al., 1991). Furthermore, it has been extensively applied in aerospace, automotive

design, and earthquake engineering, where understanding system dynamics is essential for both

performance and safety (Dussaud, 2015; He & Fu, 2001).
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Despite its broad use in other engineering disciplines, the application of modal analysis to
WDSs remains limited. WDSs are subject to hydraulic transients caused by sudden changes in
demand, pump failures, or valve operations. These transients can generate pressure surges that,

if unmanaged, may damage infrastructure (Xing & Sela, 2020). Modal analysis offers a

systematic framework for capturing the dynamic behavior of WDSs, extending beyond fault
detection to improve the overall understanding of system response under various operating

conditions.

Existing approaches for transient and modal analysis in WDSs can be broadly classified into
time-domain simulation methods (e.g., the Method of Characteristics, MOC) and frequency-
domain formulations (e.g., the transfer-matrix or admittance-matrix methods, AMM)(Lee et

al., 2006; Lee et al., 2005; Zecchin et al., 2009). Frequency-domain methods express the

governing equations in the Laplace or Fourier domain to derive frequency response diagrams
(FRDs), which relate the input and output spectra of pressure and flow signals. The FRD
reveals resonance peaks that correspond to the natural frequencies of the system. The amplitude
of each peak reflects the damping of its associated mode, with larger peaks indicating poles
that lie closer to the imaginary axis and therefore represent more weakly damped oscillations

(Zecchin et al., 2018).

In this regard, several studies have demonstrated that the FRD of a single pipeline consists

of evenly spaced resonance peaks whose relative amplitudes depend on the measurement

location and are sensitive to leaks or blockages. In particular, Lee et al., (Lee et al., 2005)
introduced inverse resonance and peak-sequencing methods to identify leaks by analyzing the

pattern of resonant peaks in the FRD, while Louati et al. (Louati et al., 2020) examined wave—

leak interactions and showed that leaks modify the relative magnitudes of resonance peaks
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while leaving their frequencies largely unchanged. These studies established a clear frequency-

domain understanding of pipeline modes and their role in resonance phenomena.

Although these methods have proven effective in controlled or single-pipe systems, they are
fundamentally input—output based, relying on external excitation, transient simulation, or
spectral analysis of measured signals to infer modal content. For example, one can use the
MOC to generate pressure responses by applying a broadband excitation (e.g., a step or pulse)
and then compute the corresponding frequency response function via Fast Fourier Transform

(FFT) of the input—output signals (Lee Pedro et al., 2008). While this approach can reveal

dominant resonance frequencies, it requires long-duration simulations, careful design of the
input signal to excite all relevant modes, and sufficiently dense sensor coverage to capture
spatial variations. Moreover, the quality of the inferred modes depends on the signal-to-noise
ratio, sampling resolution, and how persistently each mode is excited. Repeating this process
across many operating points or measurement pairs quickly becomes computationally

demanding (Che et al., 2021).

In contrast, frequency-domain formulations such as the transfer-matrix method, determine
resonance by directly solving the linearized equations in the frequency domain, but these
methods provide only global input—output relationships and do not directly yield the internal
modal structure, that is, the mode shapes or how each pipe or node contributes to each
oscillation. Consequently, while FRD-based techniques offer valuable information on
resonance frequencies, they lack the ability to describe the spatial distribution of modal energy

within large, complex networks.

To overcome these challenges, this study introduces, for the first time, a state-space-based
framework for modal analysis of WDSs using the Elastic Water Column Model (EWCM). The

EWCM extends the Rigid Water Column Model (RWCM) by including the compressibility of
4
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water and pipe-wall elasticity through a set of ordinary differential equations (ODEs), enabling

accurate simulation of fast transients while maintaining computational efficiency (Imani et al.

2025; Ulanicki & Beaujean, 2021; Zeng et al., 2022). Unlike input—output approaches such as

the transfer-matrix method, the EWCM framework directly exposes the intrinsic dynamics of
the linearized system. The eigenvalues of the system matrix correspond to the natural modes
of the network, while the right and left eigenvectors describe how energy propagates through
the network and how each state variable participates in each oscillation mode. This state-space
formulation allows all modal information to be extracted in a single step, without requiring

excitation signals, frequency sweeps, or curve fitting.

A key advantage of this formulation is its compatibility with Participation Factor (PF)
analysis, which complements modal analysis by introducing spatial insight. PFs quantify the
contribution of each state variable, nodal head or flow rate—to each mode and reveal which
parts of the network are most dynamically involved. Originally developed for power-system

stability studies (Abdulrahman, 2020; Abed et al., 2000), PF analysis bridges the gap between

frequency and space: while frequency-domain diagrams show how a system behaves across
frequencies, PFs show where each mode is most active within the network. This capability
provides a powerful diagnostic tool for identifying spatially vulnerable regions that are prone
to resonance or amplified transients, information that cannot be obtained from classical

frequency-domain approaches.

This paper presents a time-domain approach to combined modal and PF analysis of WDSs
using the EWCM. The integration of these techniques allows not only for the extraction of
dynamic modes but also for the spatial identification of vulnerable locations where transients
may be amplified. This enables a more complete understanding of how hydraulic transients
affect WDSs and provides a new way to detect potential resonance behaviors in complex

5
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networks. The goals of this study are fourfold. First, a state-space representation of WDSs is
developed by linearizing the EWCM around an operating point, enabling direct time-domain
modal analysis. Second, the system’s natural modes are extracted through eigenvalue analysis
and validated against results obtained from the AMM in the frequency domain. Third,
participation factor analysis is applied to quantify the spatial contributions of flow and head
states to each mode, revealing critical locations that are more prone to amplifying transient
responses. Finally, the practical implications of PF analysis are verified through time-domain
simulations, including a real-world case study of the New York tunnel system subjected to

broadband excitations.

After establishing and verifying the mathematical foundation of the proposed modal analysis
framework, its potential applications are analogous to those of modal analysis in other
engineering domains. By identifying dominant modes and their spatial characteristics, the
framework can assist in surge protection assessment, guide sensor and actuator placement, and
support the development of reduced-order models for monitoring and control. The New York
tunnel test illustrates its practical use in a large-scale network, where complex interactions
between topology and dynamics can obscure regions of vulnerability. Together, modal and PF
analyses form a unified framework that links the mathematical structure of WDS dynamics to
physically interpretable spatial behavior and provides a foundation for future applications such

as real-time control and resilience assessment.

Elastic Water Column Model

The one-dimensional partial differential equations governing momentum and continuity in a

pressurized pipeline system are expressed as:
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where 4 represents the piezometric head, ¢ is the volumetric flow rate, g is the gravitational
acceleration, S is the internal cross-sectional area of the pipe, D is the pipe diameter, and fis
the Darcy-Weisbach friction factor. The formulation of the EWCM originates from the analogy
between hydraulic and electrical systems. The telegrapher’s equation in electrical engineering
shares the same mathematical form as the momentum and continuity equations in hydraulics.
In this analogy, voltage corresponds to hydraulic head, current to flow rate, inductance to fluid
inertia, resistance to pipe friction, and capacitance to the water compressibility. This
correspondence forms the basis for representing hydraulic systems using an Electrical
Equivalent Circuit (EEC) framework, which allows hydraulic energy storage, dissipation, and
transfer to be analyzed in a physically intuitive way. When analyzing a pipe section of length
[, under the assumption of constant hydraulic conditions (i.e., dh/0x=Ah/l and dq/0x~Aq/l),

the transient flow equations are reformulated following Souza et al. (1999):

aq

Ah = _LE_R‘H‘H (3)
oh 4)
Aq = —CE

where L is the hydraulic inductance (L = é), C is the hydraulic capacitance (C = ‘i—Sl), and R

2

fl
2gDS?

is the hydraulic resistance (R = ) Ideally, the flow rate change due to water

compressibility should be distributed evenly along the pipeline, but the Electrical Equivalent

Method (EEM) simplifies this by concentrating the changes at specific points within the pipe
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section. These points can be the center (T-shaped electrical circuit), the upstream end,
downstream end, or both ends (n-shaped electrical circuit). Zeng et al. (2022) explored these
configurations, and this study adopts the m-shaped electrical circuit for its efficiency in
simulating the dynamic hydraulic behaviors with high accuracy. For such an EEM

configuration, shown in Figure 1(a), the governing equations for the jth pipe segment are:

Rj = Rj|q;| (5)
dq; , (6)
G dhju _ _ 7

where the subscript j refers to the j™ pipe segment in the network, and u and d represent the
upstream and downstream ends, respectively. Eq. (6) follows Kirchoff's Voltage Law (KVL)
for the EEC in Figure 1(a). In this equation, the sum of potential (head) losses due to inductance
and resistance equals the head difference between two nodes. Using Egs. (7) and (8), the
continuity equation for a node, where multiple pipes converge, or demand exists, illustrated in
Figure 1(b) is written as:

D Ga— ) qut =0 ©)

JEA;q JEAy

where the sum 3 je, , q; represents the total inflow to node 7 from incoming pipes (set A; g),
while ¥} ey, ; represents the outflow from node i to outgoing pipes (A;,,). Q; represents the

demand at node i. The sign of Q; is positive where flow is directed toward the node, which is

the opposite of the convention used by Zeng et al. (2022). This adjustment is made to maintain
8
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consistency with the AMM, where the flow toward nodes is considered positive to ensure that
the system remains energy passive, that is, it does not generate energy, in a theoretically

consistent sense (Zecchin, 2010). The terms Ag;,, and Aq; 4 denote flow rate changes at the

node due to water compressibility and pipe elasticity, affecting both upstream and downstream
pipes. These changes are critical for understanding fluid dynamics within the network,
especially in response to variations in pressure and volume. The primary difference between
the EWCM and RWCM models lies in these additional terms. Eq. (9) follows Kirchoff’s
Current Law (KCL), which enforces mass conservation at junctions by ensuring that the
algebraic sum of inflows and outflows equals the nodal demand. Presenting the system in this
circuit form provides an intuitive physical understanding of how hydraulic energy is stored,
dissipated, and transmitted through the network. By substituting Egs. (7) and (8) into Eq. (9),

the following is obtained:

1564 3o Y e

JEA; JEA; g4 JEA Y

H j i hja i hiviu J

Gj+1,u

“ajd I I
1

Cj+1/2 "ﬁq,-;l" Cj.,.l/ZT rfl{j+1,2i
A

Figure 1. Electrical Equivalent Circuits: (a) EEC for a pipe segment; (b) EEC for two pipes
in series.

Graph-Theoretical Formulation of WDSs
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In a WDS, the state variables include the hydraulic head at each node (except reservoirs) and
the flow rates in the pipes. By determining these unknown variables, the entire system's state

can be identified.

This paper represents a WDS as a graph of pipes. In graph theory, a graph is represented by an
incidence matrix, M, where each row corresponds to a node, and each column represents an
edge element. The matrix entries are either 1, -1, or 0, depending on the relationships between
nodes and edges. A value of 1 in M, jindicates that edge j exits node i, a value of -1 means
edge j enters node 7, and 0 signifies no connection between node i and edge ;. Dividing nodes
into internal and reservoir nodes (boundary nodes) allows us to partition the incidence matrix

as:
[

where the subscript / refers to internal nodes and R to reservoir nodes. Similarly, the nodal head

vector is partitioned as:
— hI
[

where h; represents the heads at internal nodes, and hy corresponds to the heads at reservoir
nodes. Based on these partitions, the vector of head differences Ah across each element is

expressed as:
M, 1" [h,
= = 1
Ah = Mh [MR] [hR] (%)

The head differences across pipes are derived from the incidence matrix and the nodal pressure

head vector. As in Zeng et al. (2022), the demand vector Q and parameter matrices L, R, C,

10
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and T (all diagonal) are employed in formulating the momentum and continuity equations for

the pipes. The momentum equation is then written as:

d
Ld—‘: — _Rdiag{|q|}q + MTh, + MTh, (14)

where |x| is the element-wise vector or matrix of x. The continuity equation at the nodes is

given by:
1 dh
Ediag{lM,Ivec{C}}d—; =M;q +Q (15)

where vec(Xing & Sela) is here defined as the vector of the diagonal elements of matrix X. Eq.
(14) and (15) form a system of nonlinear ODEs for WDSs. This set of equations has been
validated with MOC and the detail of the discretization of pipes can be found in the Zeng et al.

(2022) and (Imani et al., 2025).

Nonlinear System Representation

The system of equations above can be compactly written in a state-space form. To do this, the
state vector x is defined to include both the flow rates through the pipes and the hydraulic heads

at the internal nodes:
_ 14
= [h,] (16)
The inputs u to the system are the hydraulic heads at the reservoirs and the external demands:

o[t

In this format, the system's nonlinear dynamics can be represented as:

11
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x = f(x,u) (18)

This equation describes how the state vector x evolves over time as a nonlinear function
f (x,u) of the state and the inputs. Solving this equation gives the complete transient response
of the WDS to changes in demand or reservoir head, capturing both the flow rates and heads

in the network.

Modal Analysis and Participation factor

The following sections outline the key components of the proposed approach. First, the EWCM
is linearized to obtain a state-space model suitable for modal analysis. Then, eigenvalue
analysis and participation factor computations are performed to extract the system modes and
assess their spatial characteristics. The AMM is also introduced in the frequency domain, and

its methodology is compared with the mode extraction process based on the EWCM.

Linearization and state-space representation

To analyze the system using modal and frequency-domain methods, it's necessary to linearize
the nonlinear system around an operating point. This is particularly useful for stability analysis,

control design, and understanding the dominant modes of the system (Franklin et al., 2010). In

practice, the operating point corresponds to the steady-state heads and flows obtained from a
calibrated hydraulic model or from SCADA data under normal operating conditions. This state
reflects the nominal behavior of the network. If alternative regimes (such as peak-demand or
low-demand operation) are of interest, the same procedure can be repeated to obtain a family

of linearized models that describe how modal properties vary across different operating

12
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conditions. Linearization involves approximating the nonlinear system with a linear one by
expanding f(x,u) in a Taylor series around the steady-state operating point x, and u,. This
assumes that flow and head perturbations are small compared to their nominal values. This

yields the linearized state-space representation of the WDS:
x=Ax + Bu (19)

where A and B are the Jacobian matrices of partial derivatives with respect to the state and
input, respectively. Matrix A4 is the system matrix, which captures how the state variables (flow
rates and hydraulic heads) change in response to perturbations in the state. Matrix B is the input
matrix, which describes how external inputs (such as reservoir heads or demands) influence
the state variables.

< L™ 1Rdiag{|q|} L_IMT> (20)
= . -1
2diag{IM;|vec{C}} M; O,

where 0,5, is an mXm matrix of zeros, and L~ Rdiag{|q|} is clearly a diagonal matrix. Here,
m denotes the number of internal nodes. The system matrix A is crucial for understanding the
dynamic behavior of the WDS. Its eigenvalues determine the natural modes of the system,
while the eigenvectors provide insight into how different components of the system interact

with each mode.

Eigenvalue Analysis and participation factor
The eigenvalues A; of the system matrix A4 are found by solving the characteristic equation:
detfA— A1} =0 (21)

Each eigenvalue represents a mode of the system. If 4; is real, the mode is non-oscillatory, and

its sign determines whether the mode is stable (4; < 0) or unstable (4; > 0). Complex
13
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eigenvalues correspond to oscillatory modes, where the real part g; determines the stability and

the imaginary part w; corresponds to the oscillation frequency:
/11' = 0; + i(l)l‘ (22)

where i is the imaginary unit. For each eigenvalue, there are corresponding right and left

eigenvectors, v; and w;. The right eigenvector v; satisfies:
AVi = Aivi (23)

and represents the mode shape, describing how the state variables (flow rates and heads)

contribute to the dynamics of mode i. The left eigenvector w; satisfies:
wiA = w] (24)

and indicates how the mode i can be observed in the outputs. The PF py; for the k-th state

variable in the i-th mode is defined as (Abdulrahman, 2020; Garofalo et al., 2002):

i I wie l
Pri = (25)
' k=1 1Ykl llwi |
P = —— (26)
i =
Yomaxg—g, plpril
where || . || denotes the Li-norm operator,  is the total number of state variables, and py; is the

normalized participation factor. These factors quantify how much the k-th state variable
contributes to the i-th mode, combining information from both the left and right eigenvectors.
PFs have key properties that make them valuable for system analysis. First, the sum of PFs for
each mode across all state variables equals 1, meaning all variables together represent the full
dynamics of that mode. Similarly, the sum for each state variable across all modes also equals

1, indicating the state variable contributes fully to the system's overall behavior (Abed et al.
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2000). Additionally, PFs reveal how sensitive eigenvalues are to changes in system parameters,

helping to identify critical components for control and design decisions.

Admittance Matrix Method for Mode Extraction

In the AMM, the dynamic behavior of a WDS is analyzed in the Laplace domain. The detailed

methodology can be found in (Zecchin, 2010). This method applies the Laplace transform to

the continuity and momentum equations to convert the equations from the time domain to the
frequency domain with the Laplace operator s. The Laplace operator s = ¢ + iw, where o
represents the decay rate, and w represents the frequency. The WDS is then modeled using an
admittance matrix Y (s), which relates the nodal heads h(s) (the Laplace transform of /) and
flows Q(s) (the Laplace transform of the demands and reservoir flows) at each node. The

admittance matrix is constructed as follows (Zecchin et al., 2018):

Y(s)h(s) = Q(s) 27)

Z;1(s)cothI'(s) —Z:'(s)cschI(s)

Y(s) =Ny Na) (—Z;l(s)cschl‘(s) Z;'(s)cothI'(s)

Yo, N 28)

Where N,, and N, are the upstream and downstream incidence matrices, respectively, and
contain the information regarding the topology of the system. These matrices have the

following relation with the incidence matrix from the previous sections:

M + M| (29)
wmT

M| - M (30)
d:—z

15
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In Eq. 27, T'(s) is the propagation operator, and Z.(s) is the characteristic impedance (see

(Zecchin et al., 2009)for details).

By partitioning the system into controlled nodes (inputs) and free nodes (outputs), the network

matrix Eq. (27) can be rewritten in the following partitioned form (Zecchin et al., 2009):

( Ya(s) Yd—r(S)) <h1(5)) _ ( Q(s) )

Yr_a(s)  Y,(5) ) \he(s)) = \@r(s) G

where Qy are the Laplace transform of reservoir flows (positive flow is into the network),
Y (s) is the ngy X ny system matrix representing the demand nodes, and Y ,.(s) is the ng X ny

system matrix representing the reservoir nodes. ¥ ;_,(s) and Y,_;(s) are the respective
partitions of the network matrix that describe the contributions of flow at the demand nodes
and reservoir nodes, resulting from the nodal heads at the opposite set of nodes. It is important

to note that Y ;(s) and Y,.(s) are symmetric, and ¥ 4_,-(s) = YI_,(s).

The transfer function is then derived based on this partitioning. Zecchin et al. (2009) formulated

expressions for the input-output (I/O) transfer function as follows.

Hy:(s) Hy, (5)>
H,1(s) Hy,(s)

:< —Y71(5)Y 4 (5) Y31(s) )
Y, (5) = Y a(S)YZ ()Y ar(s) (Y)Y ar ()T

HEs) = (
(32)

For modal analysis, the system's transfer function is expressed in a mode-based form, where

the system's dynamics are described by a sum of modal terms (Zecchin et al., 2018):
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where N represents the number of modes, G,, is the complex-valued modal coefficient matrix
for the n-th mode, and z,, = o,, + iw,, 1s the complex frequency for the n-th mode. The operator

* denotes the complex conjugate.

To compute the modes, the poles of the transfer function G (s) must be located in the complex
plane. These complex modal frequencies correspond to the singular points of G, where
{Z € C: |G(Z)| = 1}. To determine the complex frequencies z,, it is necessary to identify the

locations of the poles in the analytic I/O transfer function H(s).

The general process of finding the complex frequencies z, involves determining bounds for
their real and imaginary components (i.e., 0, € [Omin) Omax] aNd W, € [Wmin Omax))s
followed by locating z, by identifying the maxima of the elements of |H| within these bounds,
which correspond to the pole locations. The process for finding the pole locations can be found

in (Zecchin et al.. 2018).

Comparison of AMM and EWCM in Modal Analysis

Modal information can, in principle, be obtained using several classical approaches. In the time
domain, the MOC can be used by exciting the system, recording the pressure and flow
responses at discrete nodes, and performing Fourier or Laplace transforms to construct
frequency-response functions. The locations of the poles in the Laplace plane can then be
inferred from the resonance peaks, poles located closer to the imaginary axis correspond to
larger amplitude responses. While this approach is conceptually straightforward, it becomes
computationally demanding for large-scale networks, as multiple transient simulations are

required to capture the full spatial response.
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Similarly, the Transfer Matrix Method (TMM), which is formulated in the frequency domain,
allows the transfer function of a single pipe or a simple series system to be constructed and its
FRD obtained, from which the poles can also be inferred. However, the traditional TMM
formulation is primarily developed for single-pipe systems, and extending it to general network
configurations requires additional derivations. For this reason, the AMM is used in this study
as the benchmark for comparison. The AMM is formulated in the Laplace domain, and an

established framework exists for extracting poles for arbitrary network topologies.

The AMM and the EWCM both offer distinct advantages in the modal analysis of water
distribution systems, depending on the context and objectives of the analysis. The AMM is
efficient for analysing the system’s input—output relationships and allows quick identification
of resonance frequencies by constructing the frequency-response function. Extracting modes
from the AMM, however, requires specific steps such as sweeping through a frequency range
and locating poles, which can involve additional computational effort. Despite this, it remains
a reliable approach for understanding a system’s dynamic characteristics in the frequency

domain.

The EWCM, in contrast, operates in the time domain and provides a model based on ODEs
that approximate the underlying PDEs of unsteady flow. When linearized about a steady
operating point, the EWCM yields a state-space representation in which modal information
follows directly from the eigenvalues and eigenvectors of the system matrix. This provides
direct access to both right and left eigenvectors, enabling the computation of PFs and detailed
spatial interpretation of each mode, capabilities that are not directly available from frequency-
domain approaches such as the AMM. These distinctions reflect the classical difference

between transfer-function models and state-space models described in control theory texts
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(e.g., (Franklin et al., 2010)): transfer-function formulations capture input—output behaviour,

while state-space models also expose the internal dynamics of the system.

Numerical simulation

In this section, three test cases are presented to demonstrate the application of the modal
analysis and PF analysis framework developed for WDS using the EWCM. The first test case
focuses on a single pipeline to explore the fundamental behaviors and validate the extracted
modes using both the EWCM and the AMM. The second test case extends the analysis to a
pipe network, introducing complexities such as loops and multiple internal nodes. For these
two test case, eigenvalue analysis and PF analysis are employed to extract the system modes
and assess the contributions of different system states to each mode. Time-domain simulations
are used to further verify the results. In Test Case 3, a real world test case, New York tunnel
has been chosen to show the applicability of PF in revealing critical locations due to hydraulic

transients.

Test case 1: single pipeline

In this test case, the modal analysis for a single pipeline, as shown in Figure 2 , is presented.

Reservoir 1
Reservoir 2
5
- 03m ; ) [ N
20m Friction factor = 0.05 / Wave speed 1000 m/s
.4 15m
A ¥
«— — — —>

1000 m

Figure 2. Structure of the pipeline for test case 1.

19



350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

To begin with, the EWCM is used to determine the modes, where the spatial discretization is
governed by the critical frequency ( f.=¢ /1 0 l)' The segment length [ is chosen such that the

highest frequency of interest satisfies f,,,, < fc. In this test case, a maximum frequency of 10
rad/s was considered; using this value, the corresponding critical frequency was applied to
determine the appropriate pipe-segment length and, consequently, the number of reaches for
each pipe. As a result, the pipeline was discretized into 16 reaches. Based on this discretization,
the system matrix has a dimension of 31 X 31, where 16 states correspond to flow rates and
15 states correspond to the pressure heads at internal nodes. Performing eigenvalue analysis on

this matrix yields 31 eigenvalues, which are listed in Table 1.

Table 1. Eigenvalue of system matrix for test case 1

Number Eigenvalue Number Eigenvalue

1 -0.1278 16,17 -0.0639 + 22.627i

23 -0.0639 + 3.135i 18,19 -0.0639 + 24.736i
4,5 -0.0639 + 6.242i 20,21 -0.0639 + 26.606i
6,7 -0.0639 + 9.288i 22,23 -0.0639 + 28.221i
8,9 -0.0639 + 12.245i 24,25 -0.0639 + 29.564i
10,11 -0.0639 + 15.084i 26,27 -0.0639 + 30.622i
12,13 -0.0639 + 17.778i 28,29 -0.0639 + 31.385i
14,15 -0.0639 + 20.300i 30,31 -0.0639 + 31.845i

As observed in Table 1, there is one pole with no imaginary part, representing a damped mode

without an oscillatory component. This damped pole can also be found using the RWCM. For

falqol

——, and the detailed
IDS

a single pipeline with a fixed head, the equation for this pole is given by

derivation for obtaining this damped mode through the RWCM is provided in Appendix. The
remaining poles have both real and imaginary parts. For this single pipeline, all oscillatory
modes have equal real parts and are complex conjugates, meaning that their decay rates are

identical, with differences only in their imaginary components. The real part of the poles is
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influenced by the system’s resistance, while the fluid compressibility modelled as capacitance

in EWCM impacts the imaginary part.

To verify the pole locations, the mode extraction procedure using the AMM was also applied
to this pipeline. The transfer function surface is shown in Figure 3, where the local maxima
indicate the locations of the poles. By performing a 2D optimization, the exact pole locations
were extracted, as shown in Figure 4. It is important to note that only the positive frequencies
are displayed in Figure 3 and Figure 4 for clarity. A comparison of the pole locations obtained
by both methods reveals that the poles from the EWCM match those from the AMM up to the
critical frequency. Beyond this frequency, the EWCM’s poles diverge from the actual poles.
However, by increasing the discretization, the bandwidth can be expanded, allowing the
EWCM to capture higher-frequency modes. Additionally, the location of the damped mode is

in agreement across all three models EWCM, RWCM, and the AMM.

2005 e 7
= 10

0 Frequency (rad/s)

Figure 3. The surface of the absolute value of the Laplace-domain response surface for test
case 1.
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Figure 4. locations in the Laplace domain for Test Case 1.

By obtaining the eigenvalues along with the left and right eigenvectors, the PF matrix can be
constructed for this test case. In this matrix, the rows correspond to the system states, and the
columns represent the modes. Since only modes 1 to 4 are valid (represented in Figure 4), the
PFs for these modes are extracted and shown in Figure 5. A PF of 1 indicates the highest
participation of a state in a given mode, while a value of 0 signifies no participation. Mode 1
represents the damped mode, and only the flow state variables contribute to this mode, with all
variables having equal importance. This result can be verified using the RWCM, as in this
model, the left-hand side of Eq. (10) is zero, meaning there is no partial derivative of the
internal head over time. For the other oscillatory modes, the PFs are illustrated in Figure 6

(only for modes with positive imaginary parts).
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PF Heatmap for Valid Modes
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Figure 5. Participation matrix for valid modes.

In Figure 6, the modes shown correspond to the first three harmonics of the system. For the
mode 2, the PF for the internal head variable is highest at the center of the pipe. This behavior
can be understood by drawing an analogy to systems such as a mass-spring-damper or a
vibrating string fixed at both ends. In the first harmonic of the system, there is an antinode at
the center of the pipe, where the potential energy is maximized, similar to the maximum
displacement in a vibrating string. The two fixed heads at the pipe’s input and output act as
nodes, where the displacement is zero. This pattern can be extended to the higher harmonics,
represented by modes 2 and 3 (the second and third harmonics of the pipeline). In these modes,
additional nodes and antinodes appear along the length of the pipe, with the internal head
variable participating more significantly at certain points, depending on the mode shape. These

harmonics have been explained in detail by (Wylie, 1993).
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Figure 6 Representation of PFs on the pipeline: nodes are associated with participation of
nodal heads, and edges are associated with flow rates through pipes.

To verify the PF matrix and identify the most sensitive locations for each mode, a time-domain
simulation was performed. The system was excited at the location with the highest PF, with
the excitation frequency matching the mode frequency. To excite the system at point 6 (Node
numbering in Figure 6), which exhibits the highest PF for the second oscillatory mode (-0.0639

+ 6.242i), an oscillatory demand, given by the equation below, was used.

Q(t) = 0.01 + 0.0005 X sin (6.242t) (34)

In Eq. (34), the constant term (0.01 m?/s) represents the steady-state demand, while the
oscillatory term (0.0005 m?*/s = 0.5 L/s) was chosen as 5% of the nominal demand. This
amplitude ensures that the excitation remains within the linear range of the model while later
allowing the analysis to demonstrate the system’s sensitivity, where even such a small
perturbation can lead to noticeable pressure variations depending on the excitation location.
The simulation results, after reaching a steady oscillatory state, are shown in Figure 7, which

illustrates the variation of pressure at internal nodes (h(t) — hy). It can be seen that a small
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412  wvariation in demand (0.5 L/s) causes a head change of approximately 10 m at nodes 6 and 14,
413  which correspond to the locations with the highest PF values. From Figure 6, node 10 has the
414  lowest PF for the second oscillatory mode, and the time-domain simulation in Figure 7
415  confirms that this node exhibits the smallest oscillation amplitude under steady oscillatory

416  conditions.

Head at Different Nodes Over Time
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, N 2 - o - Node 4
10 2 Node 5
; g - ! I T -&--Node 6
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--p--Node 9
#-Node 10
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4 \ Ny 3 ey -=+-=Node 13
NSt N 4 NL A S, «Node 14
10 14 = x Node 15
—% ¢ Nl - =* - Node 16
“ ~-#-Node 17

Head Difference
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Figure 7. Head changes at all internal nodes under steady oscillatory conditions, with the

excitation point at node 6.

417  To further demonstrate the influence of excitation location, the demand oscillation was next
418  applied at the lowest-PF node (node 10) for the same mode, using the same excitation defined
419  in Eq. (34). The resulting head variations, shown in Figure 8, indicate that the maximum head
420  change was less than 0.4 m, significantly smaller than the response observed when exciting at
421  the high-PF location. This comparison shows that identical excitations can lead to markedly
422  different dynamic responses depending on the spatial location of the applied disturbance. When
423  the excitation is applied at a high-PF node, the pressure response is amplified due to resonance
424  with the corresponding mode, whereas excitation at a low-PF node produces only a weak

425  response that is rapidly attenuated. The spatial pattern of the simulated head amplitudes in
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426  Figure 9 closely matches the PF distribution in Figure 6, illustrating that the regions with higher
427  PF values experience greater oscillation amplitudes under modal excitation. This agreement
428  verifies that the PFs capture the underlying spatial characteristics of the oscillatory modes

429  observed in the time-domain simulation.
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Figure 8. Head changes at all internal nodes under steady oscillatory conditions, with the
excitation point at node 10.
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Figure 9. FFT of internal node heads, with the excitation point at node 6 and 10.

430  Test case 2: Pipe network
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In this test case, the modal analysis for the pipe network shown in Figure 10 is implemented.
The system contains one loop, where all the details are provided in Figure 10. In the first step,
the pole locations were identified using both the EWCM and the AMM, as shown in Figure 11.
The number of reaches in the system was chosen so that there is one reach every 100 meters in

the system. Therefore, the number of reaches for the pipes is 5, 4, 6, 5, 5 and 2 respectively.

Friction factor = 0.02

Wave speed 1000 m/s
500 m
Reservoir 1
A
Reservoir 2
A 200 m —
50 0,3 m P6 b—i .
m Pl Y B P2 v ¥ P3 45 m
N3] (N4J
v A ¥
< S >
< — — > 900 m 1500 m
< — > 500 m

Figure 10. Network structure for Test Case 2.

In Figure 11, by neglecting the poles that lie on the critical frequency line, there are only four
oscillation modes below the critical frequency. In this system, there are two damped modes,

were also identified by the RWCM. According to (Shimada, 1992), the number of independent

states is equal to the difference between the number of pipes and the number of internal nodes.
In this case, the system has 6 pipes and 4 internal nodes, resulting in two negative real poles.
These damped modes are associated with the loop and the spanning tree between the two
reservoirs. As can be seen, all poles below the critical frequency align closely for both the
EWCM and AMM. A slight deviation is observed for Mode 4, for which the relative error is
below 1%. This small difference arises from the grid resolution and the optimization procedure

used in the AMM to identify modal poles.
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Figure 11. Pole locations for Test Case 2.
446  The 3D surface of the transfer function in the Laplace domain, obtained using the AMM, is

447  shown in Figure 12. The line with a decay rate equal to zero represents the FRD of the system

448  between the input and output. The location of the poles affects the FRD of the system.
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Figure 12. Surface plot of the Laplace-domain response for Test Case 2.

449  Figure 13 shows the PFs for all valid modes. As seen in Figure 13 (a) and (b), for the two

450  damped modes, only the flow rate states participate in the modes, as indicated by the dark blue
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colour in the links representing flow variables. The flow rate states of Pipe 2 participate in both

damped modes.
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Figure 13. Representation of PF on the network for all valid modes: (a) Mode 1, (b) Mode
2, (¢) Mode 3, (d) Mode 4, (¢) Mode 5, and (f) Mode 6.

For the oscillatory modes, Mode 3 (-0.032 + 1.263i), shown in Figure 13 (c), behaves like the
first harmonic of the network. This means there is one anti-node (Node 6) with maximum
potential energy (similar to a mass-spring-damper system) and two nodes with maximum
kinetic energy (Node 1 and 2). Modes 4 (-0.021 + 3.52i) and Mode 5 (-0.019 + 3.71i) should
be considered together since they form the second harmonic of the system and are closely
related. When both modes are examined simultaneously, it is evident that nodes N3 and N4
serve as anti-nodes for the second harmonic and are the most sensitive locations, experiencing
the most oscillation during the excitation of these modes. For Mode 4, Pipe 1 shows no
participation, while for Mode 5, Pipe 6 shows no participation. For the nodes on the pipe loop,
the participation alternates: if a node has participation in either Mode 4 or 5, it shows little or
no participation in the other. Among them, only Node 23 participates in both modes, with PFs

of 0.38 and 0.47 for modes 4 and 5, respectively.
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By conducting a time-domain simulation and placing an oscillating demand at Node 23, as in
Test Case 1, the system can be excited. The results of this simulation are shown in Figure 14.
For both frequencies, the system exhibits significant head variation. For excitation with the
frequency of Mode 4 (3.5 rad/s), the maximum head change is 10 meters, while for excitation
with frequency of Mode 5 (3.71 rad/s), the maximum head change is 13.5 meters. These are
considerable head changes for a demand variation of only 0.5 L/s. Although the oscillation
frequencies for these two modes are close, they demonstrate distinct behaviors. From Figure
14, it is evident that node 16 shows no participation in Mode 5 but experiences a 10-meter head

change during oscillation in mode 4.
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Figure 14. Head change at all internal nodes under steady oscillatory conditions with
excitation applied at node 10: (a) oscillation frequency of 3.5 rad/s; (b) oscillation
frequency of 3.7 rad/s.
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Test case 3: the New York tunnel system

In this test case, the practicality of PF Analysis for WDSs has been investigated. The New York
tunnel system has been extensively studied by numerous researchers for both steady-state and

transient analysis (Dandy et al., 1996). One approach to incorporating transient analysis into

the design was to identify the worst-case scenario and apply optimization techniques to reduce

transient effects (Jung Bong & Karney Bryan, 2009; Jung et al., 2011).

Details of the system can be found in (Dandy et al., 1996). It was determined that nodes 17 and

19, which are dead ends, are more critical compared to other nodes and can generate high

transients (Jung, 2022).

In the previous test cases, the system was excited using only a single frequency. However, in
real-world scenarios, system excitation consists of a combination of frequencies. Figure 15
presents a demand increase over 2 seconds, along with its frequency spectrum. The demand
rises from 0 to 0.5 m?/s following a sine-shaped pattern to ensure a gradual transition and avoid
introducing artificial high-frequency components. As shown, low frequencies exhibit higher
amplitudes compared to high frequencies. This frequency amplitude can be utilized in PF
analysis. After identifying the modes, a weighted average of PFs up to the critical frequency
can be computed using the frequency amplitude as the weighting factor. Specifically, the
amplitudes of each frequency component obtained from the Fourier spectrum (Figure 15 b)
were used to weight the normalized participation factors defined in Eq. (26). The weighted
average was then calculated as the sum of each mode’s PF multiplied by its normalized
frequency amplitude, divided by the sum of all amplitudes, ensuring that more strongly excited
frequencies contribute proportionally to the overall PF distribution. The resulting averaged PF
provides an overall representation of the state contributions to the system's transient response

and helps identify critical locations.
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Figure 15. Generated hydraulic transient by increasing demand. The rise follows a sine
pattern to smooth the transition: (a) signal in time domain; (b) frequency content of the
signal.

Figure 16 shows the weighted average PF up to the critical frequency. The system has been
discretized such that a reach is defined every 200 meters. As seen in Figure 16, the dead ends
(nodes 17 and 19) are the most critical nodes. Node Na, which is also shown in the graph,
exhibits a high PF. This node has not been identified in previous studies. Node 10 also exhibits

a high PF, which can be attributed to a significant impedance mismatch at this location. The

impedance of a pipe is defined as B = /L/C = a/gS. An impedance mismatch occurs when
two pipes with different diameters and/or materials (which influence wave speed) are joined
together. Such mismatches are well-known in power systems and fluid dynamics for causing

partial reflection and transmission of transient waves (Bohorquez et al., 2020; Gong et al.,

2013; Gong et al., 2018; Zeng et al., 2018). In this case, the sudden change in pipe diameter

near Node 10 creates a discontinuity in impedance. When a transient wave generated in a
larger-diameter pipe reaches this node, part of the energy is reflected while the rest is
transmitted with distortion. This interaction excites multiple modes in the system and increases
the dynamic activity at this location, which is why Node 10 appears as a region with high PF
in the analysis. To verify the results, a transient, as shown in Figure 15 has been applied to the
specified nodes, and the system response is presented in Figure 17Error! Reference source

not found.. The transient behavior of systems with impedance mismatches has been
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516  investigated in previous studies, and interested readers are referred to those works for further

517  details (Bohorquez et al., 2020; Gong et al., 2018).
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Figure 16. Weighted average PF up to the critical frequency.
518  Figure 17 shows the results of a demand increase at nodes 4, 10, Na, 17, 18, and 19. Node 4

519  was chosen to demonstrate the system response when the excitation point is a low-PF region.
520  The other nodes, as can be seen, generate high transients in the system according to their PF
521  analysis. By using this approach, intermediate nodes along the pipes can also be investigated,
522  and the accuracy can be increased by increasing the number of discretizations. This approach
523  can provide a clear picture of the vulnerable areas of a WDS to pressure surges and hydraulic
524  transients. The results confirm that exciting the system at nodes 17 and 19 generates high

525  transients.
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Figure 17. Transient response of the system at excitation points.

Practical Considerations, Uncertainties, and Future Directions

The numerical examples illustrate that modal analysis can reveal the underlying dynamic
structure of a water distribution system in a way analogous to its use in other engineering
disciplines such as structural or power-system dynamics. As in those fields, the method
provides a means of decomposing complex behaviour into a small number of characteristic
modes, which can assist in understanding and managing system response. However, several

practical considerations and limitations should be acknowledged, as outlined below.

First, the framework relies on linearization around a steady operating point. In practice, a
network may operate under multiple demand conditions and flow regimes, each with slightly
different hydraulic behaviour. The analysis can therefore be repeated for several representative
operating points, such as low-, average-, and high-demand scenarios to obtain a family of

modal descriptions. These can be interpreted together to understand how the dominant modes
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evolve across normal operating conditions. Similarly, the level of spatial discretization
determines the highest frequency that can be resolved: finer discretization increases accuracy
but also computational cost. The appropriate level depends on the purpose of the study, whether
the aim is general behavioural insight, surge assessment, or preparation of reduced-order

models for control applications.

Second, uncertainties in model parameters such as friction factors, wave speeds, and demand
estimates are unavoidable in practice. Experience from related disciplines suggests that such
variations shift modal frequencies and damping ratios slightly but rarely change the qualitative
pattern of the modes. These uncertainties can be examined through sensitivity analysis or
Monte-Carlo sampling to establish confidence intervals for the dominant eigenvalues and to
ensure that the identified modes remain physically meaningful. In most cases, the participation-
factor distributions are especially robust, because they represent relative spatial contributions

rather than absolute magnitudes.

Third, applying the method to large networks introduces computational challenges, as the
system matrices grow rapidly with the number of pipes and nodes. Nonetheless, the EWCM

formulation leads to sparse matrices, where only adjacent elements interact (Imani et al., 2025).

Modern sparse eigensolvers can efficiently extract the few lightly damped modes of
engineering interest, making analysis of networks with hundreds of pipes tractable. For very
large systems, one practical approach is to focus on critical sub-networks or to use the identified
dominant modes to construct reduced-order models that preserve essential dynamics while

lowering computational cost.

Future work may extend the present framework in several directions. Reduced-order models
derived from dominant modes could be coupled with real-time monitoring data to enable faster

transient prediction or adaptive control. Incorporating parameter uncertainty directly into the
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eigen-analysis, for example, through stochastic or interval methods, could further clarify the
robustness of modal indicators. Integration with control design and data assimilation
frameworks may ultimately allow the method to support operational decision-making, such as
identifying excitation sources, refining surge protection strategies, or evaluating the impact of

system modifications.

Conclusion

This paper demonstrates the use of the EWCM for modal analysis of water distribution systems
WDSs. By linearizing the EWCM around an operating point, a state-space representation is
established, allowing the extraction of natural modes through eigenvalue analysis. The results
are verified against the AMM in the frequency domain, showing consistent pole locations and
damping ratios. The study introduces PF analysis in the time domain to link each mode to its
spatial influence within the network. While frequency-domain tools such as the FRD describe
resonance behavior, PF analysis reveals how nodal heads and pipe flows contribute to each
mode, highlighting locations that are more sensitive to excitation. Time-domain simulations
show that inputs applied at high-PF locations generate strong transient responses near the
system’s fundamental frequency, whereas low-PF excitations lead to minimal response. These
results confirm the value of PF analysis for identifying regions where modest disturbances may
trigger significant pressure surges due to resonance. The New York tunnel case study
demonstrates the practicality of the proposed approach for large-scale networks. Combining
modal and PF analyses exposes spatial patterns of vulnerability not evident in frequency
analysis alone. From an engineering perspective, PF-based indicators can support resilience

assessment by identifying areas more susceptible to transient disturbances, such as sudden
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demand changes, pump failures, or valve operations. Future work focuses on integrating PF-
based monitoring into real-time applications and developing targeted control strategies for

transient suppression.
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Appendix: RWCM Eigen Analysis

In the RWCM, fewer state variables are used compared to the EWCM. Specifically, in the
RWCM, the state variables are limited to independent flow variables. This reduction in the
number of state variables presents challenges when deriving the Jacobian matrix from the
momentum equation, as the interconnection between the variables complicates the process. The
RWCM assumes an infinite wave speed, a key assumption that simplifies the fundamental

governing equations, which are expressed as follows (Shimada, 1992):

dq . 35
LE = —Rdiag{|q|}q + ATh, + ALh, (35)
Aq =-Q, (36)

The derivation starts by differentiating Eq. (36) and substituting Eq. (35), leading to an

expression for the internal heads h;:

(37)

h, =K <A,L—1[Rdiag{|q|}q — Aphg] - Q’(t))

dt

Here, K=A,L™*AT and, when h, is substituted back into Eq. (35), the following expression is

derived:
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0 t
M _ |-1(_ATKA,L~" — I}Rdiag{|ql}q — L-*ATK —Q’(t )

+ L Y{AYh, — ATK*A,L A% hy}
688  Defining W = L™*(I — ATK~1A,L™1), and incorporating the permutation matrix P, which
689  organizes the state variables into independent and dependent flows, leads to the refined

690  equation:

d
Pd—‘t’ = —PWP™'P[Rdiag{|q|}q — A%h;] + PL"*ATK!

aQ,

It (39)

691 The first n; rows of this equation set form a set of ODEs for RWCM, allowing the
692  determination of q;, the independent flow rates. Eq. (40) simplifies the matrix expression,

693  while Eq. (41) provides the dynamics of q;:

) W (40)
1 l

PWP! = (Wd)

B 4 41
% = —W,P|Rdiag{|ql}q — Aghg| + PL"' AR % ()

694  Alternatively, the flow vector ¢ is partitioned into q; (independent flow rates) and qg4

695  (dependent flow rates), where q, is expressed as a function of q;, following Shimida (1992):

qq = —A;] (Anq; + Q) (42)

696  Two additional matrices, E, and E7,, are introduced to decompose W; as follows:

ET, = [Ii Opyxny] (43)
E’{Z = [OTLDXTLi ITLD] (44)
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697  Here, np represents the number of dependent pipes, and n; represents the number of
698 independent pipes. By applying Egs. (43) and (44) to the first term on the right-hand side of

699  Eq. (41) the following relationship is established:

W;P[—Rdiag{|q|}q] = —W;;Rdiag{q;}q; — W;;Rdiag{q,}q, (45)
Wi = WiEiT1

(46)
W, = WiEiTz

700  Eq. (42) is substituted into Eq. (41), resulting in:

W,;P[—Rdiag{|q|}q] = —WRdiag{q;}q; — W,Rdiag{q,}(—A;] (A;:q; +
47)

Q)

701  Substituting Eq. (47) into Eq. (41) and taking the derivative, the Jacobian matrix is derived as

702  follows:
J = —2W ;R diag{lq;|} — 2W ,diag{R4|—-A;] (Anq; + QDI (—AL () (48)

703  The eigenvalues of the Jacobian matrix are real and negative, corresponding to the damped
704  modes of the system. These eigenvalues represent the decay rates of the system's dynamic

705  response, showing how quickly transient events are damped in the RWCM.
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