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Abstract 12 

This paper presents a modal and participation factor (PF) analysis of water distribution systems 13 

(WDSs) using the elastic water column model (EWCM). Modal analysis, widely used in other 14 

engineering fields, is adapted here to characterize the dynamic behavior of WDSs under 15 

transient conditions. By linearizing the EWCM around an operating point, a state-space 16 

representation is developed, enabling the extraction of natural modes via eigenvalue analysis. 17 

These modes, defined by their frequencies and damping ratios, are validated through 18 

comparison with the admittance matrix method (AMM) in the frequency domain. The study 19 

introduces PF analysis to quantify how each state variable (nodal head or flow rate) contributes 20 
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to each mode. This spatial information identifies critical locations that are more sensitive to 21 

excitations and capable of amplifying transient responses. To verify the effectiveness of PF 22 

analysis, time-domain simulations are conducted for three test cases, including a real-world 23 

network (the New York tunnel system). The results confirm that exciting the system at high-24 

PF locations can generate significant transients, while low-PF locations produce minimal 25 

responses. The analysis also reveals how resonance behavior in WDSs is spatially distributed, 26 

enabling the identification of vulnerable areas where transients are amplified. This work 27 

provides a unified time-domain framework for modal and PF analysis, contributing to 28 

improved system monitoring, management, and fault detection in WDSs.  29 

Keywords: Elastic water column model; Modal analysis; Participation factor; Hydraulic 30 

transient. 31 

Introduction 32 

Modal analysis is a widely used engineering technique for determining the dynamic 33 

characteristics of systems by identifying their natural frequencies, damping ratios, and mode 34 

shapes. It is particularly valuable in fields such as mechanical and civil engineering, where it 35 

helps predict how structures will respond to external forces, ensuring stability and identifying 36 

potential vulnerabilities. Modal analysis also plays a key role in the study of inter-area 37 

oscillations in power grids, helping to understand electro-mechanical oscillations (Dussaud, 38 

2015; Klein et al., 1991). Furthermore, it has been extensively applied in aerospace, automotive 39 

design, and earthquake engineering, where understanding system dynamics is essential for both 40 

performance and safety (Dussaud, 2015; He & Fu, 2001). 41 
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Despite its broad use in other engineering disciplines, the application of modal analysis to 42 

WDSs remains limited. WDSs are subject to hydraulic transients caused by sudden changes in 43 

demand, pump failures, or valve operations. These transients can generate pressure surges that, 44 

if unmanaged, may damage infrastructure (Xing & Sela, 2020). Modal analysis offers a 45 

systematic framework for capturing the dynamic behavior of WDSs, extending beyond fault 46 

detection to improve the overall understanding of system response under various operating 47 

conditions.  48 

Existing approaches for transient and modal analysis in WDSs can be broadly classified into 49 

time-domain simulation methods (e.g., the Method of Characteristics, MOC) and frequency-50 

domain formulations (e.g., the transfer-matrix or admittance-matrix methods, AMM)(Lee et 51 

al., 2006; Lee et al., 2005; Zecchin et al., 2009). Frequency-domain methods express the 52 

governing equations in the Laplace or Fourier domain to derive frequency response diagrams 53 

(FRDs), which relate the input and output spectra of pressure and flow signals. The FRD 54 

reveals resonance peaks that correspond to the natural frequencies of the system. The amplitude 55 

of each peak reflects the damping of its associated mode, with larger peaks indicating poles 56 

that lie closer to the imaginary axis and therefore represent more weakly damped oscillations 57 

(Zecchin et al., 2018). 58 

In this regard, several studies have demonstrated that the FRD of a single pipeline consists 59 

of evenly spaced resonance peaks whose relative amplitudes depend on the measurement 60 

location and are sensitive to leaks or blockages. In particular, Lee et al., (Lee et al., 2005) 61 

introduced inverse resonance and peak-sequencing methods to identify leaks by analyzing the 62 

pattern of resonant peaks in the FRD, while Louati et al. (Louati et al., 2020) examined wave–63 

leak interactions and showed that leaks modify the relative magnitudes of resonance peaks 64 
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while leaving their frequencies largely unchanged. These studies established a clear frequency-65 

domain understanding of pipeline modes and their role in resonance phenomena. 66 

Although these methods have proven effective in controlled or single-pipe systems, they are 67 

fundamentally input–output based, relying on external excitation, transient simulation, or 68 

spectral analysis of measured signals to infer modal content. For example, one can use the 69 

MOC to generate pressure responses by applying a broadband excitation (e.g., a step or pulse) 70 

and then compute the corresponding frequency response function via Fast Fourier Transform 71 

(FFT) of the input–output signals (Lee Pedro et al., 2008). While this approach can reveal 72 

dominant resonance frequencies, it requires long-duration simulations, careful design of the 73 

input signal to excite all relevant modes, and sufficiently dense sensor coverage to capture 74 

spatial variations. Moreover, the quality of the inferred modes depends on the signal-to-noise 75 

ratio, sampling resolution, and how persistently each mode is excited. Repeating this process 76 

across many operating points or measurement pairs quickly becomes computationally 77 

demanding (Che et al., 2021). 78 

In contrast, frequency-domain formulations such as the transfer-matrix method, determine 79 

resonance by directly solving the linearized equations in the frequency domain, but these 80 

methods provide only global input–output relationships and do not directly yield the internal 81 

modal structure, that is, the mode shapes or how each pipe or node contributes to each 82 

oscillation. Consequently, while FRD-based techniques offer valuable information on 83 

resonance frequencies, they lack the ability to describe the spatial distribution of modal energy 84 

within large, complex networks. 85 

To overcome these challenges, this study introduces, for the first time, a state-space-based 86 

framework for modal analysis of WDSs using the Elastic Water Column Model (EWCM). The 87 

EWCM extends the Rigid Water Column Model (RWCM) by including the compressibility of 88 
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water and pipe-wall elasticity through a set of ordinary differential equations (ODEs), enabling 89 

accurate simulation of fast transients while maintaining computational efficiency (Imani et al., 90 

2025; Ulanicki & Beaujean, 2021; Zeng et al., 2022). Unlike input–output approaches such as 91 

the transfer-matrix method, the EWCM framework directly exposes the intrinsic dynamics of 92 

the linearized system. The eigenvalues of the system matrix correspond to the natural modes 93 

of the network, while the right and left eigenvectors describe how energy propagates through 94 

the network and how each state variable participates in each oscillation mode. This state-space 95 

formulation allows all modal information to be extracted in a single step, without requiring 96 

excitation signals, frequency sweeps, or curve fitting. 97 

A key advantage of this formulation is its compatibility with Participation Factor (PF) 98 

analysis, which complements modal analysis by introducing spatial insight. PFs quantify the 99 

contribution of each state variable, nodal head or flow rate—to each mode and reveal which 100 

parts of the network are most dynamically involved. Originally developed for power-system 101 

stability studies (Abdulrahman, 2020; Abed et al., 2000), PF analysis bridges the gap between 102 

frequency and space: while frequency-domain diagrams show how a system behaves across 103 

frequencies, PFs show where each mode is most active within the network. This capability 104 

provides a powerful diagnostic tool for identifying spatially vulnerable regions that are prone 105 

to resonance or amplified transients, information that cannot be obtained from classical 106 

frequency-domain approaches. 107 

This paper presents a time-domain approach to combined modal and PF analysis of WDSs 108 

using the EWCM. The integration of these techniques allows not only for the extraction of 109 

dynamic modes but also for the spatial identification of vulnerable locations where transients 110 

may be amplified. This enables a more complete understanding of how hydraulic transients 111 

affect WDSs and provides a new way to detect potential resonance behaviors in complex 112 
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networks. The goals of this study are fourfold. First, a state-space representation of WDSs is 113 

developed by linearizing the EWCM around an operating point, enabling direct time-domain 114 

modal analysis. Second, the system’s natural modes are extracted through eigenvalue analysis 115 

and validated against results obtained from the AMM in the frequency domain. Third, 116 

participation factor analysis is applied to quantify the spatial contributions of flow and head 117 

states to each mode, revealing critical locations that are more prone to amplifying transient 118 

responses. Finally, the practical implications of PF analysis are verified through time-domain 119 

simulations, including a real-world case study of the New York tunnel system subjected to 120 

broadband excitations. 121 

After establishing and verifying the mathematical foundation of the proposed modal analysis 122 

framework, its potential applications are analogous to those of modal analysis in other 123 

engineering domains. By identifying dominant modes and their spatial characteristics, the 124 

framework can assist in surge protection assessment, guide sensor and actuator placement, and 125 

support the development of reduced-order models for monitoring and control. The New York 126 

tunnel test illustrates its practical use in a large-scale network, where complex interactions 127 

between topology and dynamics can obscure regions of vulnerability. Together, modal and PF 128 

analyses form a unified framework that links the mathematical structure of WDS dynamics to 129 

physically interpretable spatial behavior and provides a foundation for future applications such 130 

as real-time control and resilience assessment. 131 

Elastic Water Column Model 132 

The one-dimensional partial differential equations governing momentum and continuity in a 133 

pressurized pipeline system are expressed as: 134 
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(1) 

𝜕ℎ

𝜕𝑥
+

1

𝑔𝐴

𝜕𝑞

𝜕𝑡
+

𝑓𝑞|𝑞|

2𝑔𝐷𝑆2
= 0 

(2) 𝑔𝑆

𝑎2

𝜕ℎ

𝜕𝑡
+

𝜕𝑞

𝜕𝑥
= 0 

where h represents the piezometric head, q is the volumetric flow rate, g is the gravitational 135 

acceleration, S is the internal cross-sectional area of the pipe, D is the pipe diameter, and f is 136 

the Darcy-Weisbach friction factor. The formulation of the EWCM originates from the analogy 137 

between hydraulic and electrical systems. The telegrapher’s equation in electrical engineering 138 

shares the same mathematical form as the momentum and continuity equations in hydraulics. 139 

In this analogy, voltage corresponds to hydraulic head, current to flow rate, inductance to fluid 140 

inertia, resistance to pipe friction, and capacitance to the water compressibility. This 141 

correspondence forms the basis for representing hydraulic systems using an Electrical 142 

Equivalent Circuit (EEC) framework, which allows hydraulic energy storage, dissipation, and 143 

transfer to be analyzed in a physically intuitive way. When analyzing a pipe section of length 144 

l, under the assumption of constant hydraulic conditions (i.e., 𝜕ℎ/𝜕𝑥≈∆ℎ/𝑙  and 𝜕𝑞/𝜕𝑥≈∆𝑞/𝑙), 145 

the transient flow equations are reformulated following Souza et al. (1999): 146 

(3) ∆ℎ = −𝐿
𝜕𝑞

𝜕𝑡
− 𝑅𝑞|𝑞| 

(4) 
∆𝑞 = −𝐶

𝜕ℎ

𝜕𝑡
 

where 𝐿 is the hydraulic inductance (𝐿 =
𝑙

𝑔𝑆
), C is the hydraulic capacitance (𝐶 =

𝑔𝑆𝑙

𝑎2 ), and R 147 

is the hydraulic resistance (𝑅 =
𝑓𝑙

2𝑔𝐷𝑆2). Ideally, the flow rate change due to water 148 

compressibility should be distributed evenly along the pipeline, but the Electrical Equivalent 149 

Method (EEM) simplifies this by concentrating the changes at specific points within the pipe 150 
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section. These points can be the center (T-shaped electrical circuit), the upstream end, 151 

downstream end, or both ends (π-shaped electrical circuit). Zeng et al. (2022) explored these 152 

configurations, and this study adopts the π-shaped electrical circuit for its efficiency in 153 

simulating the dynamic hydraulic behaviors with high accuracy. For such an EEM 154 

configuration, shown in Figure 1(a), the governing equations for the jth pipe segment are: 155 

(5) 𝑅𝑗
′ = 𝑅𝑗|𝑞𝑗| 

(6) 
ℎ𝑗,𝑢 = 𝐿𝑗

𝑑𝑞𝑗

𝑑𝑡
+ 𝑅𝑗

′𝑞𝑗 + ℎ𝑗,𝑑 

(7) 𝑐𝑗

2

𝑑ℎ𝑗,𝑢

𝑑𝑡
= 𝑞𝑗,𝑢 − 𝑞𝑗 = −∆𝑞𝑗,𝑢 

(8) 𝑐𝑗

2

𝑑ℎ𝑗,𝑑

𝑑𝑡
= 𝑞𝑗 − 𝑞𝑗,𝑑 = −∆𝑞𝑗,𝑑 

where the subscript j refers to the jth pipe segment in the network, and u and d represent the 156 

upstream and downstream ends, respectively. Eq. (6) follows Kirchoff's Voltage Law (KVL) 157 

for the EEC in Figure 1(a). In this equation, the sum of potential (head) losses due to inductance 158 

and resistance equals the head difference between two nodes. Using Eqs. (7) and (8), the 159 

continuity equation for a node, where multiple pipes converge, or demand exists, illustrated in 160 

Figure 1(b) is written as: 161 

(9) ∑ 𝑞𝑗,𝑑

𝑗∈Λ𝑖,𝑑

− ∑ 𝑞𝑗,𝑢

𝑗∈Λ𝑖,𝑢

+ 𝑄𝑖 = 0 

where the sum ∑ 𝑞𝑖𝑗∈Λ𝑖,𝑑
 represents the total inflow to node i from incoming pipes (set Λ𝑖,𝑑), 162 

while ∑ 𝑞𝑗𝑗∈Λ𝑖,𝑢
 represents the outflow from node i to outgoing pipes (Λ𝑖,𝑢). 𝑄𝑖 represents the 163 

demand at node i. The sign of 𝑄𝑖 is positive where flow is directed toward the node, which is 164 

the opposite of the convention used by Zeng et al. (2022). This adjustment is made to maintain 165 
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consistency with the AMM, where the flow toward nodes is considered positive to ensure that 166 

the system remains energy passive, that is, it does not generate energy, in a theoretically 167 

consistent sense (Zecchin, 2010). The terms Δ𝑞𝑗,𝑢 and Δ𝑞𝑗,𝑑 denote flow rate changes at the 168 

node due to water compressibility and pipe elasticity, affecting both upstream and downstream 169 

pipes. These changes are critical for understanding fluid dynamics within the network, 170 

especially in response to variations in pressure and volume. The primary difference between 171 

the EWCM and RWCM models lies in these additional terms. Eq. (9) follows Kirchoff’s 172 

Current Law (KCL), which enforces mass conservation at junctions by ensuring that the 173 

algebraic sum of inflows and outflows equals the nodal demand. Presenting the system in this 174 

circuit form provides an intuitive physical understanding of how hydraulic energy is stored, 175 

dissipated, and transmitted through the network. By substituting Eqs. (7) and (8) into Eq. (9), 176 

the following is obtained: 177 

(10) (
1

2
∑ 𝐶𝑗

𝑗∈Λ𝑖

)
𝑑ℎ𝑖

𝑑𝑡
= ∑ 𝑞𝑗

𝑗∈Λ𝑖,𝑑

− ∑ 𝑞𝑗

𝑗∈Λ𝑖,𝑢

+ 𝑄𝑖 

  

 

Figure 1. Electrical Equivalent Circuits: (a) EEC for a pipe segment; (b) EEC for two pipes 

in series. 

Graph-Theoretical Formulation of WDSs 178 
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In a WDS, the state variables include the hydraulic head at each node (except reservoirs) and 179 

the flow rates in the pipes. By determining these unknown variables, the entire system's state 180 

can be identified. 181 

This paper represents a WDS as a graph of pipes. In graph theory, a graph is represented by an 182 

incidence matrix, 𝚳, where each row corresponds to a node, and each column represents an 183 

edge element. The matrix entries are either 1, -1, or 0, depending on the relationships between 184 

nodes and edges. A value of 1 in 𝚳𝑖,𝑗 indicates that edge j exits node i, a value of -1 means 185 

edge j enters node i, and 0 signifies no connection between node i and edge j. Dividing nodes 186 

into internal and reservoir nodes (boundary nodes) allows us to partition the incidence matrix 187 

as: 188 

(11) 𝐌 = [
𝚳𝐼

𝚳𝑅
]   

where the subscript I refers to internal nodes and R to reservoir nodes. Similarly, the nodal head 189 

vector is partitioned as: 190 

(12) 𝒉 = [
𝒉𝐼

𝒉𝑅
] 

where 𝒉𝐼 represents the heads at internal nodes, and 𝒉𝑅 corresponds to the heads at reservoir 191 

nodes. Based on these partitions, the vector of head differences ∆𝒉 across each element is 192 

expressed as: 193 

(13) ∆𝒉 = 𝐌𝒉 = [
𝚳𝐼

𝚳𝑅
]

𝑇

[
𝒉𝐼

𝒉𝑅
] 

The head differences across pipes are derived from the incidence matrix and the nodal pressure 194 

head vector. As in Zeng et al. (2022), the demand vector Q and parameter matrices L, R, C, 195 
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and T (all diagonal) are employed in formulating the momentum and continuity equations for 196 

the pipes. The momentum equation is then written as: 197 

(14) 𝑳
𝑑𝒒

𝑑𝑡
= −𝑹diag{|𝒒|}𝒒 + 𝚳𝐼

𝑇𝒉𝐼 + 𝚳𝑅
𝑇𝒉𝑅 

where |x| is the element-wise vector or matrix of x. The continuity equation at the nodes is 198 

given by: 199 

(15) 
1

2
diag{|𝚳𝐼|vec{𝑪}}

𝑑𝒉𝐼

𝑑𝑡
= 𝚳𝑰𝒒 + 𝑸 

where vec(Xing & Sela) is here defined as the vector of the diagonal elements of matrix X. Eq. 200 

(14) and (15) form a system of nonlinear ODEs for WDSs. This set of equations has been 201 

validated with MOC and the detail of the discretization of pipes can be found in the Zeng et al. 202 

(2022) and (Imani et al., 2025).   203 

Nonlinear System Representation 204 

The system of equations above can be compactly written in a state-space form. To do this, the 205 

state vector 𝑥 is defined to include both the flow rates through the pipes and the hydraulic heads 206 

at the internal nodes:  207 

(16) 𝒙 = [
𝒒
𝒉𝐼

] 

The inputs u to the system are the hydraulic heads at the reservoirs and the external demands: 208 

(17) 𝒖 = [
𝒉𝑅

𝑸
] 

In this format, the system's nonlinear dynamics can be represented as: 209 
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(18) 𝒙̇ = 𝑓(𝒙, 𝒖) 

This equation describes how the state vector x evolves over time as a nonlinear function 210 

𝑓(𝒙, 𝒖) of the state and the inputs. Solving this equation gives the complete transient response 211 

of the WDS to changes in demand or reservoir head, capturing both the flow rates and heads 212 

in the network. 213 

Modal Analysis and Participation factor 214 

The following sections outline the key components of the proposed approach. First, the EWCM 215 

is linearized to obtain a state-space model suitable for modal analysis. Then, eigenvalue 216 

analysis and participation factor computations are performed to extract the system modes and 217 

assess their spatial characteristics. The AMM is also introduced in the frequency domain, and 218 

its methodology is compared with the mode extraction process based on the EWCM. 219 

Linearization and state-space representation  220 

To analyze the system using modal and frequency-domain methods, it's necessary to linearize 221 

the nonlinear system around an operating point. This is particularly useful for stability analysis, 222 

control design, and understanding the dominant modes of the system (Franklin et al., 2010). In 223 

practice, the operating point corresponds to the steady-state heads and flows obtained from a 224 

calibrated hydraulic model or from SCADA data under normal operating conditions. This state 225 

reflects the nominal behavior of the network. If alternative regimes (such as peak-demand or 226 

low-demand operation) are of interest, the same procedure can be repeated to obtain a family 227 

of linearized models that describe how modal properties vary across different operating 228 
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conditions. Linearization involves approximating the nonlinear system with a linear one by 229 

expanding 𝑓(𝒙, 𝒖) in a Taylor series around the steady-state operating point 𝒙0 and 𝒖0. This 230 

assumes that flow and head perturbations are small compared to their nominal values. This 231 

yields the linearized state-space representation of the WDS:  232 

(19) 𝒙̇ = 𝑨𝒙 + 𝑩𝒖 

where A and B are the Jacobian matrices of partial derivatives with respect to the state and 233 

input, respectively. Matrix A is the system matrix, which captures how the state variables (flow 234 

rates and hydraulic heads) change in response to perturbations in the state. Matrix B is the input 235 

matrix, which describes how external inputs (such as reservoir heads or demands) influence 236 

the state variables.  237 

(20) 
𝑨 = (

𝑳−1𝑹diag{|𝒒|} 𝑳−1𝑴𝐼
𝑇

2diag{|𝚳𝐼|vec{𝑪}}
−1

𝚳𝐼 𝟎𝑚×𝑚

) 

where 𝟎𝑚×𝑚 is an m×m matrix of zeros, and 𝑳−1𝑹diag{|𝒒|} is clearly a diagonal matrix. Here, 238 

𝑚 denotes the number of internal nodes. The system matrix A is crucial for understanding the 239 

dynamic behavior of the WDS. Its eigenvalues determine the natural modes of the system, 240 

while the eigenvectors provide insight into how different components of the system interact 241 

with each mode. 242 

Eigenvalue Analysis and participation factor 243 

The eigenvalues 𝜆𝑖 of the system matrix A are found by solving the characteristic equation: 244 

(21) det{𝐀 − 𝜆𝑖𝐈} = 0 

Each eigenvalue represents a mode of the system. If 𝜆𝑖 is real, the mode is non-oscillatory, and 245 

its sign determines whether the mode is stable (𝜆𝑖 < 0) or unstable (𝜆𝑖 > 0). Complex 246 
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eigenvalues correspond to oscillatory modes, where the real part 𝜎𝑖 determines the stability and 247 

the imaginary part 𝜔𝑖 corresponds to the oscillation frequency: 248 

(22) 𝜆𝑖 = 𝜎𝑖 + 𝐢𝜔𝑖 

where i is the imaginary unit. For each eigenvalue, there are corresponding right and left 249 

eigenvectors, 𝝂𝑖 and 𝒘𝑖. The right eigenvector 𝜈𝑖 satisfies:  250 

(23) 𝑨𝜈𝑖 = 𝜆𝑖𝝂𝑖 

and represents the mode shape, describing how the state variables (flow rates and heads) 251 

contribute to the dynamics of mode i. The left eigenvector 𝑤𝑖 satisfies: 252 

(24) 𝒘𝑖
𝑇𝑨 = 𝜆𝑖𝒘𝑖

𝑇 

and indicates how the mode i can be observed in the outputs. The PF 𝑝𝑘𝑖 for the k-th state 253 

variable in the i-th mode is defined as (Abdulrahman, 2020; Garofalo et al., 2002): 254 

(25) 𝑝𝑘𝑖 =
‖𝑣𝑘𝑖‖‖𝑤𝑘𝑖‖

∑ ‖𝑣𝑘𝑖‖‖𝑤𝑘𝑖‖
𝑛
𝑘=1

 

(26) 𝑝̅𝑘𝑖 =
𝑝𝑘𝑖

max𝑖=1,…,𝑛|𝑝𝑘𝑖|
 

where ‖ . ‖ denotes the L1-norm operator, n is the total number of state variables, and 𝑝̅𝑘𝑖 is the 255 

normalized participation factor. These factors quantify how much the k-th state variable 256 

contributes to the i-th mode, combining information from both the left and right eigenvectors. 257 

PFs have key properties that make them valuable for system analysis. First, the sum of PFs for 258 

each mode across all state variables equals 1, meaning all variables together represent the full 259 

dynamics of that mode. Similarly, the sum for each state variable across all modes also equals 260 

1, indicating the state variable contributes fully to the system's overall behavior (Abed et al., 261 
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2000). Additionally, PFs reveal how sensitive eigenvalues are to changes in system parameters, 262 

helping to identify critical components for control and design decisions.  263 

Admittance Matrix Method for Mode Extraction 264 

In the AMM, the dynamic behavior of a WDS is analyzed in the Laplace domain. The detailed 265 

methodology can be found in (Zecchin, 2010). This method applies the Laplace transform to 266 

the continuity and momentum equations to convert the equations from the time domain to the 267 

frequency domain with the Laplace operator 𝑠. The Laplace operator 𝑠 = 𝜎 + 𝐢𝜔, where 𝜎 268 

represents the decay rate, and 𝜔 represents the frequency. The WDS is then modeled using an 269 

admittance matrix 𝒀(𝑠), which relates the nodal heads 𝒉(𝑠) (the Laplace transform of h) and 270 

flows 𝑸(𝑠)  (the Laplace transform of the demands and reservoir flows) at each node. The 271 

admittance matrix is constructed as follows (Zecchin et al., 2018): 272 

(27) 𝒀(𝑠)𝒉(𝑠) = 𝑸(𝑠) 

(28) 𝒀(𝑠) = (𝑵𝑢 𝑵𝑑) (
𝒁𝑐

−1(𝑠)coth𝚪(𝒔) −𝒁𝑐
−1(𝑠)csch𝚪(𝒔)

−𝒁𝑐
−1(𝑠)csch𝚪(𝒔) 𝒁𝑐

−1(𝑠)coth𝚪(𝒔)
) (𝑵𝑢 𝑵𝑑)𝑇 

Where 𝑁𝑢 and 𝑁𝑑 are the upstream and downstream incidence matrices, respectively, and 273 

contain the information regarding the topology of the system. These matrices have the 274 

following relation with the incidence matrix from the previous sections:  275 

(29) 
𝑵𝑢 =

𝜧 + |𝜧|

2
 

(30) 
𝑵𝑑 =

|𝜧| − 𝜧

2
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In Eq. 27, 𝚪(𝑠) is the propagation operator, and 𝚭𝒄(𝑠) is the characteristic impedance (see 276 

(Zecchin et al., 2009)for details).  277 

By partitioning the system into controlled nodes (inputs) and free nodes (outputs), the network 278 

matrix Eq. (27) can be rewritten in the following partitioned form (Zecchin et al., 2009):   279 

(31) (
𝒀𝑑(𝑠) 𝒀𝑑−𝑟(𝑠)

𝒀𝑟−𝑑(𝑠) 𝒀𝑟(𝑠)
) (

𝒉𝐼(𝑠)
𝒉𝑅(𝑠)

) = (
𝑸(𝑠)

𝑸𝑅(𝑠)
) 

where 𝑸𝑅 are the Laplace transform of reservoir flows (positive flow is into the network), 280 

𝒀𝑑(𝑠) is the 𝑛𝑑 × 𝑛𝑑 system matrix representing the demand nodes, and 𝒀𝑟(𝑠) is the 𝑛𝑑 × 𝑛𝑑 281 

 system matrix representing the reservoir nodes. 𝒀𝑑−𝑟(𝑠) and 𝒀𝑟−𝑑(𝑠) are the respective 282 

partitions of the network matrix that describe the contributions of flow at the demand nodes 283 

and reservoir nodes, resulting from the nodal heads at the opposite set of nodes. It is important 284 

to note that 𝒀𝑑(𝑠) and 𝒀𝑟(𝑠) are symmetric, and 𝒀𝑑−𝑟(𝑠) = 𝒀𝑟−𝑑
𝑇 (𝑠). 285 

The transfer function is then derived based on this partitioning. Zecchin et al. (2009) formulated 286 

expressions for the input-output (I/O) transfer function as follows. 287 

(32) 

𝑯(𝑠) = (
𝑯11(𝑠) 𝑯12(𝑠)

𝑯21(𝑠) 𝑯22(𝑠)
)

= (
−𝒀𝑑

−1(𝑠)𝒀𝑑−𝑟(𝑠) 𝒀𝑑
−1(𝑠)

𝒀𝑟(𝑠) − 𝒀𝑟−𝑑(𝑠)𝒀𝑑
−1(𝑠)𝒀𝑑−𝑟(𝑠) (𝒀𝑑

−1(𝑠)𝒀𝑑−𝑟(𝑠))𝑇) 

For modal analysis, the system's transfer function is expressed in a mode-based form, where 288 

the system's dynamics are described by a sum of modal terms (Zecchin et al., 2018): 289 

(33) 𝐺(𝑠) = ∑ (
𝐺𝑛

𝑠 − 𝑧𝑛
+

𝐺𝑛
∗

𝑠 − 𝑧𝑛
∗

)

𝑁

𝑛=1
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where N represents the number of modes, 𝐺𝑛 is the complex-valued modal coefficient matrix 290 

for the n-th mode, and 𝑧𝑛 = 𝜎𝑛 + 𝐢𝜔𝑛 is the complex frequency for the n-th mode. The operator 291 

* denotes the complex conjugate. 292 

To compute the modes, the poles of the transfer function 𝐺(𝑠) must be located in the complex 293 

plane. These complex modal frequencies correspond to the singular points of G, where 294 

{𝑧 ∈  ℂ ∶  |𝐺(𝑧)| = 1}. To determine the complex frequencies  𝑧𝑛, it is necessary to identify the 295 

locations of the poles in the analytic I/O transfer function 𝐻(𝑠). 296 

The general process of finding the complex frequencies 𝑧𝑛 involves determining bounds for 297 

their real and imaginary components (i.e., 𝜎𝑛 ∈ [𝜎𝑚𝑖𝑛, 𝜎𝑚𝑎𝑥] and 𝜔𝑛 ∈ [𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥]), 298 

followed by locating 𝑧𝑛 by identifying the maxima of the elements of |𝐻| within these bounds, 299 

which correspond to the pole locations. The process for finding the pole locations can be found 300 

in (Zecchin et al., 2018).  301 

Comparison of AMM and EWCM in Modal Analysis 302 

Modal information can, in principle, be obtained using several classical approaches. In the time 303 

domain, the MOC can be used by exciting the system, recording the pressure and flow 304 

responses at discrete nodes, and performing Fourier or Laplace transforms to construct 305 

frequency-response functions. The locations of the poles in the Laplace plane can then be 306 

inferred from the resonance peaks, poles located closer to the imaginary axis correspond to 307 

larger amplitude responses. While this approach is conceptually straightforward, it becomes 308 

computationally demanding for large-scale networks, as multiple transient simulations are 309 

required to capture the full spatial response.  310 
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Similarly, the Transfer Matrix Method (TMM), which is formulated in the frequency domain, 311 

allows the transfer function of a single pipe or a simple series system to be constructed and its 312 

FRD obtained, from which the poles can also be inferred. However, the traditional TMM 313 

formulation is primarily developed for single-pipe systems, and extending it to general network 314 

configurations requires additional derivations. For this reason, the AMM is used in this study 315 

as the benchmark for comparison. The AMM is formulated in the Laplace domain, and an 316 

established framework exists for extracting poles for arbitrary network topologies. 317 

The AMM and the EWCM both offer distinct advantages in the modal analysis of water 318 

distribution systems, depending on the context and objectives of the analysis. The AMM is 319 

efficient for analysing the system’s input–output relationships and allows quick identification 320 

of resonance frequencies by constructing the frequency-response function. Extracting modes 321 

from the AMM, however, requires specific steps such as sweeping through a frequency range 322 

and locating poles, which can involve additional computational effort. Despite this, it remains 323 

a reliable approach for understanding a system’s dynamic characteristics in the frequency 324 

domain. 325 

The EWCM, in contrast, operates in the time domain and provides a model based on ODEs 326 

that approximate the underlying PDEs of unsteady flow. When linearized about a steady 327 

operating point, the EWCM yields a state-space representation in which modal information 328 

follows directly from the eigenvalues and eigenvectors of the system matrix. This provides 329 

direct access to both right and left eigenvectors, enabling the computation of PFs and detailed 330 

spatial interpretation of each mode, capabilities that are not directly available from frequency-331 

domain approaches such as the AMM. These distinctions reflect the classical difference 332 

between transfer-function models and state-space models described in control theory texts 333 
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(e.g., (Franklin et al., 2010)): transfer-function formulations capture input–output behaviour, 334 

while state-space models also expose the internal dynamics of the system. 335 

Numerical simulation 336 

In this section, three test cases are presented to demonstrate the application of the modal 337 

analysis and PF analysis framework developed for WDS using the EWCM. The first test case 338 

focuses on a single pipeline to explore the fundamental behaviors and validate the extracted 339 

modes using both the EWCM and the AMM. The second test case extends the analysis to a 340 

pipe network, introducing complexities such as loops and multiple internal nodes. For these 341 

two test case, eigenvalue analysis and PF analysis are employed to extract the system modes 342 

and assess the contributions of different system states to each mode. Time-domain simulations 343 

are used to further verify the results. In Test Case 3, a real world test case, New York tunnel 344 

has been chosen to show the applicability of PF in revealing critical locations due to hydraulic 345 

transients. 346 

Test case 1: single pipeline 347 

In this test case, the modal analysis for a single pipeline, as shown in Figure 2 , is presented.  348 

 

Figure 2. Structure of the pipeline for test case 1. 

 349 
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To begin with, the EWCM is used to determine the modes, where the spatial discretization is 350 

governed by the critical frequency (𝑓𝑐 = 𝑎
10𝑙⁄ ). The segment length 𝑙 is chosen such that the 351 

highest frequency of interest satisfies 𝑓𝑚𝑎𝑥 ≤ 𝑓𝑐. In this test case, a maximum frequency of 10 352 

rad/s was considered; using this value, the corresponding critical frequency was applied to 353 

determine the appropriate pipe-segment length and, consequently, the number of reaches for 354 

each pipe. As a result, the pipeline was discretized into 16 reaches. Based on this discretization, 355 

the system matrix has a dimension of 31 × 31, where 16 states correspond to flow rates and 356 

15 states correspond to the pressure heads at internal nodes. Performing eigenvalue analysis on 357 

this matrix yields 31 eigenvalues, which are listed in Table 1.  358 

Table 1. Eigenvalue of system matrix for test case 1 359 

Number Eigenvalue Number Eigenvalue 

1 -0.1278 16,17 -0.0639 ± 22.627i 

2,3 -0.0639 ± 3.135i 18,19 -0.0639 ± 24.736i 

4,5 -0.0639 ± 6.242i 20,21 -0.0639 ± 26.606i 

6,7 -0.0639 ± 9.288i 22,23 -0.0639 ± 28.221i 

8,9 -0.0639 ± 12.245i 24,25 -0.0639 ± 29.564i 

10,11 -0.0639 ± 15.084i 26,27 -0.0639 ± 30.622i 

12,13 -0.0639 ± 17.778i 28,29 -0.0639 ± 31.385i 

14,15 -0.0639 ± 20.300i 30,31 -0.0639 ± 31.845i 

As observed in Table 1, there is one pole with no imaginary part, representing a damped mode 360 

without an oscillatory component. This damped pole can also be found using the RWCM. For 361 

a single pipeline with a fixed head, the equation for this pole is given by 
𝑓𝑎|𝑞0|

𝑙𝐷𝑆
, and the detailed 362 

derivation for obtaining this damped mode through the RWCM is provided in Appendix. The 363 

remaining poles have both real and imaginary parts. For this single pipeline, all oscillatory 364 

modes have equal real parts and are complex conjugates, meaning that their decay rates are 365 

identical, with differences only in their imaginary components. The real part of the poles is 366 
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influenced by the system’s resistance, while the fluid compressibility modelled as capacitance 367 

in EWCM impacts the imaginary part. 368 

To verify the pole locations, the mode extraction procedure using the AMM was also applied 369 

to this pipeline. The transfer function surface is shown in Figure 3, where the local maxima 370 

indicate the locations of the poles. By performing a 2D optimization, the exact pole locations 371 

were extracted, as shown in Figure 4. It is important to note that only the positive frequencies 372 

are displayed in Figure 3 and Figure 4 for clarity. A comparison of the pole locations obtained 373 

by both methods reveals that the poles from the EWCM match those from the AMM up to the 374 

critical frequency. Beyond this frequency, the EWCM’s poles diverge from the actual poles. 375 

However, by increasing the discretization, the bandwidth can be expanded, allowing the 376 

EWCM to capture higher-frequency modes. Additionally, the location of the damped mode is 377 

in agreement across all three models EWCM, RWCM, and the AMM. 378 

 

Figure 3. The surface of the absolute value of the Laplace-domain response surface for test 

case 1. 
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Figure 4. locations in the Laplace domain for Test Case 1. 

By obtaining the eigenvalues along with the left and right eigenvectors, the PF matrix can be 379 

constructed for this test case. In this matrix, the rows correspond to the system states, and the 380 

columns represent the modes. Since only modes 1 to 4 are valid (represented in  Figure 4), the 381 

PFs for these modes are extracted and shown in Figure 5. A PF of 1 indicates the highest 382 

participation of a state in a given mode, while a value of 0 signifies no participation. Mode 1 383 

represents the damped mode, and only the flow state variables contribute to this mode, with all 384 

variables having equal importance. This result can be verified using the RWCM, as in this 385 

model, the left-hand side of Eq. (10) is zero, meaning there is no partial derivative of the 386 

internal head over time. For the other oscillatory modes, the PFs are illustrated in Figure 6 387 

(only for modes with positive imaginary parts).    388 
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Figure 5. Participation matrix for valid modes. 

In Figure 6, the modes shown correspond to the first three harmonics of the system. For the 389 

mode 2, the PF for the internal head variable is highest at the center of the pipe. This behavior 390 

can be understood by drawing an analogy to systems such as a mass-spring-damper or a 391 

vibrating string fixed at both ends. In the first harmonic of the system, there is an antinode at 392 

the center of the pipe, where the potential energy is maximized, similar to the maximum 393 

displacement in a vibrating string. The two fixed heads at the pipe’s input and output act as 394 

nodes, where the displacement is zero. This pattern can be extended to the higher harmonics, 395 

represented by modes 2 and 3 (the second and third harmonics of the pipeline). In these modes, 396 

additional nodes and antinodes appear along the length of the pipe, with the internal head 397 

variable participating more significantly at certain points, depending on the mode shape. These 398 

harmonics have been explained in detail by (Wylie, 1993). 399 



24 

 

 

Figure 6 Representation of PFs on the pipeline: nodes are associated with participation of 

nodal heads, and edges are associated with flow rates through pipes. 

To verify the PF matrix and identify the most sensitive locations for each mode, a time-domain 400 

simulation was performed. The system was excited at the location with the highest PF, with 401 

the excitation frequency matching the mode frequency. To excite the system at point 6 (Node 402 

numbering in Figure 6), which exhibits the highest PF for the second oscillatory mode (-0.0639 403 

± 6.242i), an oscillatory demand, given by the equation below, was used. 404 

(34) 𝑄(𝑡) = 0.01 + 0.0005 × sin (6.242𝑡) 

In Eq. (34), the constant term (0.01 m³/s) represents the steady-state demand, while the 405 

oscillatory term (0.0005 m³/s = 0.5 L/s) was chosen as 5% of the nominal demand. This 406 

amplitude ensures that the excitation remains within the linear range of the model while later 407 

allowing the analysis to demonstrate the system’s sensitivity, where even such a small 408 

perturbation can lead to noticeable pressure variations depending on the excitation location. 409 

The simulation results, after reaching a steady oscillatory state, are shown in Figure 7, which 410 

illustrates the variation of pressure at internal nodes (ℎ(𝑡) − ℎ0). It can be seen that a small 411 
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variation in demand (0.5 L/s) causes a head change of approximately 10 m at nodes 6 and 14, 412 

which correspond to the locations with the highest PF values. From Figure 6, node 10 has the 413 

lowest PF for the second oscillatory mode, and the time-domain simulation in Figure 7 414 

confirms that this node exhibits the smallest oscillation amplitude under steady oscillatory 415 

conditions.  416 

 

Figure 7. Head changes at all internal nodes under steady oscillatory conditions, with the 

excitation point at node 6. 

To further demonstrate the influence of excitation location, the demand oscillation was next 417 

applied at the lowest-PF node (node 10) for the same mode, using the same excitation defined 418 

in Eq. (34). The resulting head variations, shown in Figure 8, indicate that the maximum head 419 

change was less than 0.4 m, significantly smaller than the response observed when exciting at 420 

the high-PF location. This comparison shows that identical excitations can lead to markedly 421 

different dynamic responses depending on the spatial location of the applied disturbance. When 422 

the excitation is applied at a high-PF node, the pressure response is amplified due to resonance 423 

with the corresponding mode, whereas excitation at a low-PF node produces only a weak 424 

response that is rapidly attenuated. The spatial pattern of the simulated head amplitudes in 425 
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Figure 9 closely matches the PF distribution in Figure 6, illustrating that the regions with higher 426 

PF values experience greater oscillation amplitudes under modal excitation. This agreement 427 

verifies that the PFs capture the underlying spatial characteristics of the oscillatory modes 428 

observed in the time-domain simulation.  429 

 

Figure 8. Head changes at all internal nodes under steady oscillatory conditions, with the 

excitation point at node 10. 

 

Figure 9. FFT of internal node heads, with the excitation point at node 6 and 10. 

Test case 2: Pipe network  430 
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In this test case, the modal analysis for the pipe network shown in Figure 10 is implemented. 431 

The system contains one loop, where all the details are provided in Figure 10. In the first step, 432 

the pole locations were identified using both the EWCM and the AMM, as shown in Figure 11. 433 

The number of reaches in the system was chosen so that there is one reach every 100 meters in 434 

the system. Therefore, the number of reaches for the pipes is 5, 4, 6, 5, 5 and 2 respectively.  435 

 

Figure 10. Network structure for Test Case 2. 

In Figure 11, by neglecting the poles that lie on the critical frequency line, there are only four 436 

oscillation modes below the critical frequency. In this system, there are two damped modes, 437 

were also identified by the RWCM. According to (Shimada, 1992), the number of independent 438 

states is equal to the difference between the number of pipes and the number of internal nodes. 439 

In this case, the system has 6 pipes and 4 internal nodes, resulting in two negative real poles. 440 

These damped modes are associated with the loop and the spanning tree between the two 441 

reservoirs. As can be seen, all poles below the critical frequency align closely for both the 442 

EWCM and AMM. A slight deviation is observed for Mode 4, for which the relative error is 443 

below 1%. This small difference arises from the grid resolution and the optimization procedure 444 

used in the AMM to identify modal poles. 445 
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Figure 11. Pole locations for Test Case 2. 

The 3D surface of the transfer function in the Laplace domain, obtained using the AMM, is 446 

shown in Figure 12. The line with a decay rate equal to zero represents the FRD of the system 447 

between the input and output. The location of the poles affects the FRD of the system.  448 

 

Figure 12. Surface plot of the Laplace-domain response for Test Case 2. 

Figure 13 shows the PFs for all valid modes. As seen in Figure 13 (a) and (b), for the two 449 

damped modes, only the flow rate states participate in the modes, as indicated by the dark blue 450 
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colour in the links representing flow variables. The flow rate states of Pipe 2 participate in both 451 

damped modes.  452 

 

Figure 13. Representation of PF on the network for all valid modes: (a) Mode 1, (b) Mode 

2, (c) Mode 3, (d) Mode 4, (e) Mode 5, and (f) Mode 6. 

For the oscillatory modes, Mode 3 (-0.032 + 1.263i), shown in Figure 13 (c), behaves like the 453 

first harmonic of the network. This means there is one anti-node (Node 6) with maximum 454 

potential energy (similar to a mass-spring-damper system) and two nodes with maximum 455 

kinetic energy (Node 1 and 2). Modes 4 (-0.021 + 3.52i) and Mode 5 (-0.019 + 3.71i) should 456 

be considered together since they form the second harmonic of the system and are closely 457 

related. When both modes are examined simultaneously, it is evident that nodes N3 and N4 458 

serve as anti-nodes for the second harmonic and are the most sensitive locations, experiencing 459 

the most oscillation during the excitation of these modes. For Mode 4, Pipe 1 shows no 460 

participation, while for Mode 5, Pipe 6 shows no participation. For the nodes on the pipe loop, 461 

the participation alternates: if a node has participation in either Mode 4 or 5, it shows little or 462 

no participation in the other. Among them, only Node 23 participates in both modes, with PFs 463 

of 0.38 and 0.47 for modes 4 and 5, respectively.  464 
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By conducting a time-domain simulation and placing an oscillating demand at Node 23, as in 465 

Test Case 1, the system can be excited. The results of this simulation are shown in Figure 14. 466 

For both frequencies, the system exhibits significant head variation. For excitation with the 467 

frequency of Mode 4 (3.5 rad/s), the maximum head change is 10 meters, while for excitation 468 

with frequency of Mode 5 (3.71 rad/s), the maximum head change is 13.5 meters. These are 469 

considerable head changes for a demand variation of only 0.5 L/s. Although the oscillation 470 

frequencies for these two modes are close, they demonstrate distinct behaviors. From Figure 471 

14, it is evident that node 16 shows no participation in Mode 5 but experiences a 10-meter head 472 

change during oscillation in mode 4.   473 

 

Figure 14. Head change at all internal nodes under steady oscillatory conditions with 

excitation applied at node 10: (a) oscillation frequency of 3.5 rad/s; (b) oscillation 

frequency of 3.7 rad/s. 

 474 
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Test case 3: the New York tunnel system 475 

In this test case, the practicality of PF Analysis for WDSs has been investigated. The New York 476 

tunnel system has been extensively studied by numerous researchers for both steady-state and 477 

transient analysis (Dandy et al., 1996). One approach to incorporating transient analysis into 478 

the design was to identify the worst-case scenario and apply optimization techniques to reduce 479 

transient effects (Jung Bong & Karney Bryan, 2009; Jung et al., 2011). 480 

Details of the system can be found in (Dandy et al., 1996). It was determined that nodes 17 and 481 

19, which are dead ends, are more critical compared to other nodes and can generate high 482 

transients (Jung, 2022). 483 

In the previous test cases, the system was excited using only a single frequency. However, in 484 

real-world scenarios, system excitation consists of a combination of frequencies. Figure 15 485 

presents a demand increase over 2 seconds, along with its frequency spectrum. The demand 486 

rises from 0 to 0.5 m³/s following a sine-shaped pattern to ensure a gradual transition and avoid 487 

introducing artificial high-frequency components. As shown, low frequencies exhibit higher 488 

amplitudes compared to high frequencies. This frequency amplitude can be utilized in PF 489 

analysis. After identifying the modes, a weighted average of PFs up to the critical frequency 490 

can be computed using the frequency amplitude as the weighting factor.  Specifically, the 491 

amplitudes of each frequency component obtained from the Fourier spectrum (Figure 15 b) 492 

were used to weight the normalized participation factors defined in Eq. (26). The weighted 493 

average was then calculated as the sum of each mode’s PF multiplied by its normalized 494 

frequency amplitude, divided by the sum of all amplitudes, ensuring that more strongly excited 495 

frequencies contribute proportionally to the overall PF distribution. The resulting averaged PF 496 

provides an overall representation of the state contributions to the system's transient response 497 

and helps identify critical locations. 498 
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Figure 15. Generated hydraulic transient by increasing demand. The rise follows a sine 

pattern to smooth the transition: (a) signal in time domain; (b) frequency content of the 

signal. 

Figure 16 shows the weighted average PF up to the critical frequency. The system has been 499 

discretized such that a reach is defined every 200 meters. As seen in Figure 16, the dead ends 500 

(nodes 17 and 19) are the most critical nodes. Node NA, which is also shown in the graph, 501 

exhibits a high PF. This node has not been identified in previous studies. Node 10 also exhibits 502 

a high PF, which can be attributed to a significant impedance mismatch at this location. The 503 

impedance of a pipe is defined as 𝐵 = √𝐿 𝐶⁄ = 𝑎 𝑔𝑆⁄ . An impedance mismatch occurs when 504 

two pipes with different diameters and/or materials (which influence wave speed) are joined 505 

together. Such mismatches are well-known in power systems and fluid dynamics for causing 506 

partial reflection and transmission of transient waves (Bohorquez et al., 2020; Gong et al., 507 

2013; Gong et al., 2018; Zeng et al., 2018). In this case, the sudden change in pipe diameter 508 

near Node 10 creates a discontinuity in impedance. When a transient wave generated in a 509 

larger-diameter pipe reaches this node, part of the energy is reflected while the rest is 510 

transmitted with distortion. This interaction excites multiple modes in the system and increases 511 

the dynamic activity at this location, which is why Node 10 appears as a region with high PF 512 

in the analysis. To verify the results, a transient, as shown in Figure 15 has been applied to the 513 

specified nodes, and the system response is presented in Figure 17Error! Reference source 514 

not found.. The transient behavior of systems with impedance mismatches has been 515 
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investigated in previous studies, and interested readers are referred to those works for further 516 

details (Bohorquez et al., 2020; Gong et al., 2018). 517 

 

Figure 16. Weighted average PF up to the critical frequency. 

Figure 17 shows the results of a demand increase at nodes 4, 10, NA, 17, 18, and 19. Node 4 518 

was chosen to demonstrate the system response when the excitation point is a low-PF region. 519 

The other nodes, as can be seen, generate high transients in the system according to their PF 520 

analysis. By using this approach, intermediate nodes along the pipes can also be investigated, 521 

and the accuracy can be increased by increasing the number of discretizations. This approach 522 

can provide a clear picture of the vulnerable areas of a WDS to pressure surges and hydraulic 523 

transients. The results confirm that exciting the system at nodes 17 and 19 generates high 524 

transients. 525 
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Figure 17. Transient response of the system at excitation points. 

Practical Considerations, Uncertainties, and Future Directions 526 

The numerical examples illustrate that modal analysis can reveal the underlying dynamic 527 

structure of a water distribution system in a way analogous to its use in other engineering 528 

disciplines such as structural or power-system dynamics. As in those fields, the method 529 

provides a means of decomposing complex behaviour into a small number of characteristic 530 

modes, which can assist in understanding and managing system response. However, several 531 

practical considerations and limitations should be acknowledged, as outlined below.   532 

First, the framework relies on linearization around a steady operating point. In practice, a 533 

network may operate under multiple demand conditions and flow regimes, each with slightly 534 

different hydraulic behaviour. The analysis can therefore be repeated for several representative 535 

operating points, such as low-, average-, and high-demand scenarios to obtain a family of 536 

modal descriptions. These can be interpreted together to understand how the dominant modes 537 
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evolve across normal operating conditions. Similarly, the level of spatial discretization 538 

determines the highest frequency that can be resolved: finer discretization increases accuracy 539 

but also computational cost. The appropriate level depends on the purpose of the study, whether 540 

the aim is general behavioural insight, surge assessment, or preparation of reduced-order 541 

models for control applications.  542 

Second, uncertainties in model parameters such as friction factors, wave speeds, and demand 543 

estimates are unavoidable in practice. Experience from related disciplines suggests that such 544 

variations shift modal frequencies and damping ratios slightly but rarely change the qualitative 545 

pattern of the modes. These uncertainties can be examined through sensitivity analysis or 546 

Monte-Carlo sampling to establish confidence intervals for the dominant eigenvalues and to 547 

ensure that the identified modes remain physically meaningful. In most cases, the participation-548 

factor distributions are especially robust, because they represent relative spatial contributions 549 

rather than absolute magnitudes.  550 

Third, applying the method to large networks introduces computational challenges, as the 551 

system matrices grow rapidly with the number of pipes and nodes. Nonetheless, the EWCM 552 

formulation leads to sparse matrices, where only adjacent elements interact (Imani et al., 2025). 553 

Modern sparse eigensolvers can efficiently extract the few lightly damped modes of 554 

engineering interest, making analysis of networks with hundreds of pipes tractable. For very 555 

large systems, one practical approach is to focus on critical sub-networks or to use the identified 556 

dominant modes to construct reduced-order models that preserve essential dynamics while 557 

lowering computational cost.  558 

Future work may extend the present framework in several directions. Reduced-order models 559 

derived from dominant modes could be coupled with real-time monitoring data to enable faster 560 

transient prediction or adaptive control. Incorporating parameter uncertainty directly into the 561 



36 

 

eigen-analysis, for example, through stochastic or interval methods, could further clarify the 562 

robustness of modal indicators. Integration with control design and data assimilation 563 

frameworks may ultimately allow the method to support operational decision-making, such as 564 

identifying excitation sources, refining surge protection strategies, or evaluating the impact of 565 

system modifications. 566 

Conclusion 567 

This paper demonstrates the use of the EWCM for modal analysis of water distribution systems 568 

WDSs. By linearizing the EWCM around an operating point, a state-space representation is 569 

established, allowing the extraction of natural modes through eigenvalue analysis. The results 570 

are verified against the AMM in the frequency domain, showing consistent pole locations and 571 

damping ratios. The study introduces PF analysis in the time domain to link each mode to its 572 

spatial influence within the network. While frequency-domain tools such as the FRD describe 573 

resonance behavior, PF analysis reveals how nodal heads and pipe flows contribute to each 574 

mode, highlighting locations that are more sensitive to excitation. Time-domain simulations 575 

show that inputs applied at high-PF locations generate strong transient responses near the 576 

system’s fundamental frequency, whereas low-PF excitations lead to minimal response. These 577 

results confirm the value of PF analysis for identifying regions where modest disturbances may 578 

trigger significant pressure surges due to resonance. The New York tunnel case study 579 

demonstrates the practicality of the proposed approach for large-scale networks. Combining 580 

modal and PF analyses exposes spatial patterns of vulnerability not evident in frequency 581 

analysis alone. From an engineering perspective, PF-based indicators can support resilience 582 

assessment by identifying areas more susceptible to transient disturbances, such as sudden 583 



37 

 

demand changes, pump failures, or valve operations. Future work focuses on integrating PF-584 

based monitoring into real-time applications and developing targeted control strategies for 585 

transient suppression. 586 
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 676 

Appendix: RWCM Eigen Analysis  677 

In the RWCM, fewer state variables are used compared to the EWCM. Specifically, in the 678 

RWCM, the state variables are limited to independent flow variables. This reduction in the 679 

number of state variables presents challenges when deriving the Jacobian matrix from the 680 

momentum equation, as the interconnection between the variables complicates the process. The 681 

RWCM assumes an infinite wave speed, a key assumption that simplifies the fundamental 682 

governing equations, which are expressed as follows (Shimada, 1992): 683 

(35) 
𝑳

𝑑𝒒

𝑑𝑡
= −𝑹diag{|𝒒|}𝒒 + 𝑨𝐼

𝑇𝒉𝐼 + 𝑨𝑅
𝑇 𝒉𝑅 

(36) 𝑨𝐼𝒒 = −𝑸𝐼 

The derivation starts by differentiating Eq. (36) and substituting Eq. (35), leading to an 684 

expression for the internal heads 𝒉𝐼:  685 

(37) 𝒉𝐼 = 𝑲−1 (𝑨𝐼𝑳−1[𝑹diag{|𝒒|}𝒒 − 𝑨𝑹
𝑻 𝒉𝑹] −

𝑸𝐼(𝑡)

𝑑𝑡
) 

Here, K=𝑨𝐼𝑳−1𝑨𝐼
𝑇 and, when 𝒉𝐼 is substituted back into Eq. (35), the following expression is 686 

derived: 687 

https://doi.org/doi:10.1061/(ASCE)0733-9399(2009)135:6(538
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(38) 

𝜕𝒒

𝜕𝑡
= 𝑳−1{−𝑨𝐼

𝑇𝑲−1𝑨𝐼𝑳−1 − 𝑰}𝑹diag{|𝒒|}𝒒 − 𝑳−1𝑨𝐼
𝑇𝑲−1

𝑸𝐼(𝑡)

𝑑𝑡

+ 𝑳−1{𝑨𝑅
𝑇 𝒉𝑅 − 𝑨𝐼

𝑇𝑲−1𝑨𝐼𝑳−1𝑨𝑅
𝑻𝒉𝑅} 

Defining 𝑾 = 𝑳−1(𝑰 − 𝑨𝐼
𝑇𝑲−1𝑨𝐼𝑳−1), and incorporating the permutation matrix P, which 688 

organizes the state variables into independent and dependent flows, leads to the refined 689 

equation: 690 

(39) 𝑷
𝑑𝒒

𝑑𝑡
= −𝑷𝑾𝑷−1𝑷[𝑹diag{|𝒒|}𝒒 − 𝑨𝑅

𝑇 𝒉𝑅] + 𝑷𝑳−1𝑨𝐼
𝑇𝑲−1

𝑑𝑸𝐼

𝑑𝑡
 

The first 𝑛𝑖 rows of this equation set form a set of ODEs for RWCM, allowing the 691 

determination of 𝒒𝑖, the independent flow rates. Eq. (40) simplifies the matrix expression, 692 

while Eq. (41) provides the dynamics of 𝒒𝑖: 693 

(40) 
𝑷𝑾𝑷−1 = (

𝑾𝑖

𝑾𝑑
) 

(41) 𝑑𝒒𝑖

𝑑𝑡
= −𝑾𝑖𝑷[𝑹diag{|𝒒|}𝒒 − 𝑨𝑹

𝑻 𝒉𝑹] + 𝑷𝑳−1𝑨𝑰
𝑻𝑹−1

𝑑𝑸𝑰

𝑑𝑡
 

Alternatively, the flow vector q is partitioned into 𝒒𝑖  (independent flow rates) and 𝒒𝑑 694 

(dependent flow rates), where 𝒒𝑑 is expressed as a function of 𝒒𝑖, following Shimida (1992): 695 

(42) 𝒒𝑑 = −𝑨𝐼𝑑
−1 (𝑨𝐼𝑖𝒒𝑖 + 𝑸𝐼) 

Two additional matrices, 𝑬𝑖1
𝑇  and 𝑬𝑖2

𝑇 , are introduced to decompose Wi as follows:  696 

(43) 𝑬𝑖1
𝑇 = [𝑰𝑛𝑖  𝟎𝑛𝑖×𝑛𝐷

] 

(44) 𝑬𝑖2
𝑇 = [𝟎𝑛𝐷×𝑛𝑖

  𝑰𝑛𝐷
] 
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Here, 𝑛𝐷 represents the number of dependent pipes, and 𝑛𝑖 represents the number of 697 

independent pipes. By applying Eqs. (43) and (44) to the first term on the right-hand side of 698 

Eq. (41) the following relationship is established: 699 

(45) 𝑾𝑖𝑷[−𝑹diag{|𝒒|}𝒒] = −𝑾𝑖1𝑹diag{𝒒𝑖}𝒒𝑖 − 𝑾𝑖1𝑹diag{𝒒𝑑}𝒒𝑑 

(46) 

𝑾𝑖1 = 𝑾𝑖𝑬𝑖1
𝑇  

𝑾𝑖2 = 𝑾𝑖𝑬𝑖2
𝑇  

Eq. (42) is substituted into Eq. (41), resulting in:  700 

(47) 

𝑾𝑖𝑷[−𝑹diag{|𝒒|}𝒒] = −𝑾𝑖1𝑹diag{𝒒𝑖}𝒒𝑖  − 𝑾𝑖2𝑹diag{𝒒𝑑}(−𝑨𝐼𝑑
−1 (𝑨𝐼𝑖𝒒𝑖 +

𝑸𝐼)) 

Substituting Eq. (47) into Eq. (41) and taking the derivative, the Jacobian matrix is derived as 701 

follows: 702 

(48) 𝑱 = −2𝑾𝑖1𝑹𝑖diag{|𝒒𝑖|} − 2𝑾𝑖2diag{𝑹𝑑|−𝑨𝐼𝑑
−1 (𝑨𝐼𝑖𝒒𝑖 + 𝑸𝐼)|}(−𝑨𝐼𝑑

−1 (𝑨𝐼𝑖)) 

The eigenvalues of the Jacobian matrix are real and negative, corresponding to the damped 703 

modes of the system. These eigenvalues represent the decay rates of the system's dynamic 704 

response, showing how quickly transient events are damped in the RWCM.  705 


