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Abstract: The elastic water column model (EWCM) has been enhanced through the integration of dynamic electromechanical elements,
such as pressure-reducing valves (PRVs) and pumps, facilitating advanced transient analysis of water distribution systems in the time domain.
The graph-theoretical framework has been employed to represent any arbitrary network configuration with different hydraulic components.
Electric equivalent circuits (EECs) have been introduced for these dynamic components and integrated to the EWCM create a set of differ-
ential algebraic equations (DAEs). Verification against established models, such as the rigid water column model (RWCM) and the method of
characteristics (MOC), confirms the enhanced EWCM’s accuracy, validity, and computational advantages. Specifically, in fast transient
scenarios, the EWCM outperforms the RWCM by accounting for water compressibility. It also surpasses the MOC in computational
efficiency due to its foundation on ordinary differential equations and independence from Courant–Friedrichs–Lewy condition constraints.
The model’s accuracy is controllable by increasing the number of reaches, although this increases computational cost. The investigation into
the model’s stiffness reveals a notable increase, with the EWCM being approximately 25 times stiffer than the RWCM. Although this allows
for capturing a broader frequency range, it also increases numerical stiffness, making solver selection more critical. The study further
emphasizes the computational advantages of employing sparse matrices within the EWCM. In large-scale networks, the graph representation
of the EWCM predominantly features sparse matrices, which reduce computation time and memory usage. DOI: 10.1061/JWRMD5.
WRENG-6946. © 2025 American Society of Civil Engineers.

Author keywords: Elastic water column model (EWCM); Rigid water column model (RWCM); Stiffness; Graph theory; Pressure-reducing
valves (PRVs).

Introduction

Hydraulic transients in water distribution systems (WDS) can be
triggered by both rapid events and the gradual changes of dynamic
elements, leading to a spectrum of transient responses. These tran-
sients are categorized into fast and slow types, with slow transients
often generated by the controlled operation of dynamic components
such as hydraulically controlled pressure-reducing valves (PRVs)
and variable-speed pumps. For example, PRVs may take tens of
seconds to a minute to adjust to a new position, and variable-speed
pumps exhibit time constants of tens of seconds due to the com-
bined inertia of the motor and pump, contributing to gradual pres-
sure and flow changes (Prescott and Ulanicki 2008). However,
under certain conditions, these same elements can also be sources

of fast transients. A sudden stoppage of pumps, for instance, can
cause a rapid reversal of flow, generating high-speed pressure
waves, and a rapid operation or failure of a PRV can lead to sudden
pressure spikes or drops. Such fast transients pose significant chal-
lenges, including the potential for pipe failures, underscoring the
complexity of managing hydraulic behaviors in WDS (Xing and
Sela 2020).

Effectively simulating both fast and slow transients requires a
thorough characterization of unsteady flow to select appropriate
models. Traditional methods like the method of characteristics
(MOC) have been employed to predict specifically fast transient
wave behavior, informing design processes and mitigation strate-
gies. The scope of modeling fast transients extends beyond design
to include fault detection (Zeng et al. 2020, 2023), condition assess-
ment (Zhang et al. 2020), model calibration (Simpson et al. 2000),
pressure management (Creaco et al. 2017a, b), and uncertainty
quantification (Khilqa et al. 2019).

Despite its utility, the MOC approach is computationally de-
manding, and satisfying the Courant–Friedrichs–Lewy (CFL) con-
dition to ensure stable solutions limits its applicability for slow
transients (Nault and Karney 2016a). To address this challenge,
the rigid water column model (RWCM) was introduced, simplify-
ing the partial differential equations (PDEs) of momentum and
mass conservation for WDS into a set of ordinary differential equa-
tions (ODEs) by assuming an infinite wave speed (Nault and
Karney 2016b). This model facilitates a larger time-step selection,
making RWCM suitable for control and optimization purposes.
Early RWC modeling, such as Onizuka’s (1981, 1986) loop-based
model for pipe networks developed between 1981 and 1986
extended steady-state flow analyses but was limited by the need
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for pseudoloops and fictitious flows. Shimada’s (1989, 1992) intro-
duction of the incidence matrix method in significantly enhanced
modeling efficiency by accurately depicting network topology,
facilitating slow transient event simulation without pseudoloops.
This advancement broadened RWCM’s applicability across various
network configurations.

A significant milestone was achieved with the development of
the Rigid Water Column Global Gradient Algorithm (RWC-GGA)
by Nault and Karney (2016b), evolving from generalized global
gradient algorithms to include inertial effects and considerations
for variable-area tanks and node outflows, marking a notable im-
provement in RWCM methodology. The RWCM model further
evolved by incorporating dynamic components like PRVs and
pumps (Ulanicki and Beaujean 2021).

Despite its advancements in different aspects, RWCM faces sig-
nificant numerical errors when simulating high-frequency water
hammer waves (Zeng et al. 2022). To simulate fast transients and
incorporate water compressibility while retaining the computa-
tional advantages of RWCMs, the elastic water column model
(EWCM) was introduced. Initially applied in the hydropower field
by Nicolet (2007), this model treats a pipe section as a lumped
system. This approach has been successfully applied to stability
analysis and transient simulation in hydropower stations, showcas-
ing its utility and effectiveness (Nicolet et al. 2007; Souza et al.
1999; Zeng et al. 2015, 2016).

The development of the elastic water column (EWC) model was
notably inspired by methodologies from the telecommunication
sector, particularly the approach to resolving the propagation of
electrical waves in conductors through an equivalent scheme
(Jaeger 1977). This scheme offered a high level of abstraction and
a rigorous formalism, encapsulated in the telegraphist’s equations.
The analogy between this and the momentum and continuity equa-
tions, which model the propagation of pressure waves in hydraulic
systems, is striking. It facilitates the identification of a lineic hy-
draulic resistance (attributable to head losses through a pipe), a
lineic hydraulic inductance (reflecting the inertia effect of water),
and a lineic hydraulic capacitance (corresponding to the storage
effect due to pressure increase and thus a function of the wave
speed) (Nicolet 2007). Analyzing this equivalent scheme offers
insights into both steady-state and transient conditions, revealing
that in steady states, only the resistance is significant, causing head
losses along the pipe.

In 2022, the EWCM was applied to pipe networks for the first
time, combining a graph-theoretic approach with a distributed
scheme electric equivalent circuit (EEC) to simulate hydraulic tran-
sients across various network components. This application dem-
onstrated the method’s ability to optimize both accuracy and
efficiency in simulating hydraulic transient events in pipe networks
(Zeng et al. 2022). Furthermore, a notable advantage of the EWC
model is its foundation on ODEs, enabling its representation in a
state-space format. This format is instrumental for conducting mo-
dal analysis, enabling stability and observability assessments, and
supporting various other control applications, thus greatly enhanc-
ing the model’s utility in the analysis and management of WDS.

This study aims to build upon the work of Zeng et al. (2022)
by incorporating dynamic components such as PRVs and pumps
into the EWCM, establishing a comprehensive framework for
integrating any dynamic element into the model. In addition, the
study rigorously evaluates the EWCM’s performance under various
conditions, comparing it with traditional models like the RWCM
and the MOC, particularly in terms of handling higher frequency
excitations in water networks. The stiffness and computational ef-
ficiency of the EWCM, especially in large-scale networks, are also
examined by leveraging sparse matrices.

The “Methodology” section outlines the mathematical formu-
lation of the EWCM and its integration with dynamic elements
using EECs. The “Numerical Simulation” section follows with two
case studies that compare the EWCM’s performance with the
RWCM and MOC for both slow and fast transients. Next, the
“Numerical Considerations” section discusses key factors such as
stiffness and sparsity, highlighting both the computational bene-
fits and challenges of the EWCM for large systems. Finally, the
“Conclusion” summarizes the findings and discusses potential
applications and future directions for optimizing and controlling
water distribution systems.

Methodology

The one-dimensional partial differential equations of momentum
and continuity for a pressurized pipeline system are given as
follows:

∂h
∂x þ

1

gA
∂q
∂t þ

fqjqj
2gDA2

¼ 0 ð1Þ

gA
a2

∂h
∂t þ

∂q
∂x ¼ 0 ð2Þ

where h = piezometric head; q = volumetric flow rate; g = gravi-
tational acceleration; A = internal cross-sectional area of the pipe-
line; D = diameter of the pipe; and f = Darcy–Weisbach friction
factor. In analyzing a distinct segment of pipe of length l, with the
assumption of constant spatial gradients in hydraulic conditions
(i.e., ∂h=∂x≈Δh=l and ∂q=∂x≈Δq=l), the equations governing
transient flow are reformulated as follows (Souza et al. 1999):

Δh ¼ −L ∂q
∂t − Rqjqj ð3Þ

Δq ¼ −C ∂h
∂t ð4Þ

where L = hydraulic inductance, which equals l=gA; C = hydraulic
capacitance, which equals gAl=a2; and R = hydraulic resistance,
which is fl=2gDA2.

Although it is theoretically ideal to distribute the flow rate
change from water compressibility evenly along the pipeline, the
electrical equivalent method (EEM) simplifies this by concentrating
it at specific points within the pipe section. These points include the
center (T-shape electrical circuit), upstream end, downstream end,
or both ends of the pipe section (π-shaped electrical circuit). Zeng
et al. (2022) explored these configurations, and this study specifi-
cally selects the π-shaped electrical circuit due to its efficiency in
simulating the dynamic hydraulic behaviors in pipelines with high
accuracy. For such an EEM configuration, equations for the jth
pipe in the network are defined as follows:

Lj
dqj
dt

¼ −Rjjqjjqj þ ðhj;u − hj;dÞ ð5Þ

Cj

2

dhj;u
dt

¼ Δqj;u ð6Þ

Cj

2

dhj;d
dt

¼ Δqj;d ð7Þ

where subscript j ¼ jth pipe (or reaches) in the network; and u and
d = upstream and downstream ends, respectively. Given Eqs. (6)
and (7), the continuity equation for a node—where multiple pipes
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may intersect, connect to a tank, or have a demand—can be expressed
as follows:X

j∈Λi;u

qj −
X
j∈Λi;d

qj −
X
j∈Λi;u

Δqj;u −
X
j∈Λi;d

Δqj;d −Qi ¼ 0 ð8Þ

where t
P

j∈Λi;u
qi = total inflow to node i from the set of incoming

pipes denoted as Λi;u;
P

j∈Λi;d
qj = total outflow from the node i to

the set of outgoing pipes Λi;d; Qi = demand at the node; and Δqj;d
andΔqj;u = changes in flow rate at the node due to water compress-
ibility and pipe elasticity, affecting the downstream and upstream
pipes respectively. These changes are crucial for understanding the
dynamics of fluid flow within the network, especially in response to
variations in pressure and volume. The primary distinction between
the EWCM and the RWCM lies in these two additional terms.
Substituting Eqs. (6) and (7) into Eq. (8) to replace the compress-
ibility terms and considering an extra capacitance T for having a
tank at the node terms yields�

1

2

X
j∈Λi

Cj þ Ti

�
dhi
dt

¼
X
j∈Λi;u

qj −
X
j∈Λi;d

qj −Qi ð9Þ

Eqs. (5) and (9) are the two fundamental equations for the
EWCM, within which the dynamic elements such as PRVs and
pumps will be incorporated.

Pressure-Reducing Valves

PRVs are modeled as a two-port component, analogous to a pipe,
which facilitates its integration into hydraulic network simulations.
This modeling approach simplifies the representation of PRVs, fo-
cusing on their connectivity between two nodes: the upstream node
and the downstream node. The essential function of the PRV, under
this paradigm, is to regulate the downstream pressure to a predeter-
mined set point, ensuring stability regardless of upstream pressure
variations, provided the upstream pressure remains above the set
point. This functionality is crucial for maintaining desired pressure
levels across the network, enhancing system reliability, and pre-
venting damage due to excessive pressure.

The model incorporates a dynamic element through a hydraulic
control mechanism, utilizing a feedback loop via a pilot valve to
adjust the valve resistance in response to changes in the set point.
This dynamic adjustment process, which is captured in the simu-
lation, reflects the pressure-dependent behavior of the PRV as it
stabilizes the downstream pressure to the new set point, as de-
scribed in the following (Prescott and Ulanicki 2003, 2008):

ẋm ¼ αðhset − hdÞ ð10Þ

where xm = new state variable, that represents the percentage of
valve opening; hset = PRV set point; and α = valve change rate
coefficient, where α can take different values depending on whether
the valve is opening or closing, that is

α ¼
(

αopen if hset > hdðt −ΔÞ
αclosed otherwise

ð11Þ

where αopen and αclose = opening and closing rates of the valve, re-
spectively; and Δ = delay period for the valve mode change oper-
ation [hdðt −ΔÞ is used to indicate that α is changed depending on
the past value of hd].

The algebraic component of the model is defined by a conven-
tional valve equation, which can be reformulated as follows:

hu − hd ¼
1

C2
v
q2 ð12Þ

Cv ¼ fðxmÞ ð13Þ
where Cv = valve’s capacity, which is a function of the valve open-
ing. Manufacturers of valves typically provide this relationship,
which can be accurately estimated using a second-order polynomial
or exponential function. Eq. (12) can be used in place of Eq. (5) for
the PRV element in WDS. Following this, the electrical equivalent
circuit of PRVs is depicted in Fig. 1(a), demonstrating that PRVs
behave as variable resistors. Additionally, it demonstrates how
PRVs can be integrated into the EECs of adjacent pipes.

Pump

Pumps are modeled to account for the energy supplied to counteract
gravitational and frictional losses, encapsulated by two primary
equations. The first, a differential equation, captures pump inertia,
and is given by

ṡ ¼ 1

T
ðv − sÞ ð14Þ

where s = pump speed; v = speed set point; and T = time constant.
The second equation, algebraic in nature, quantifies the head in-
crease across the pump as a function of flow rate and pump speed
(Ulanicki and Beaujean 2021), and is given by

hd − hu ¼ k1q2 þ k2qsþ k3s2 ð15Þ
where k1, k2, and k3 = empirically determined coefficients.

Pumps in the EEC function analogously to variable voltage
sources, and, as demonstrated Fig. 1(b), they can be seamlessly in-
tegrated into pipelines. Similar to PRVs, pumps are modeled as
two-port elements within the system. Indeed, any dynamic compo-
nent in the WDS capable of being described by a combination of
one algebraic and one ODE can be incorporated into the EWCM as
a two-port component. The ODE aspect of these components
introduces additional state variables, enriching the flexibility and
complexity of the EWC model.

General Structure of an Active Element

From consideration of Eqs. (10) and (14), the general dynamic
structure of an active element is given by the linear first order ODE
and the algebraic head change equation

dz
dt

¼ azþ bu

hd − hu ¼ feðz; qÞ ð16Þ

where z = elements internal state [z ¼ s for pumps as in Eq. (14)];
and u = control signal (hset for PRVs and v for pumps); a and b =
state and input coefficients; and feðz; qÞ = function describing the
head change across the element for state z and element flow q
[Eq. (12) for PRVs and Eq. (15) for pumps]. For both PRVs and
pumps, b ¼ −a, and the state equation is of the form

dz
dt

¼ aðu − zÞ ð17Þ

which has the interpretation that the state z is drawn to the control u
at an exponential rate of a. In the following section, this form of the
active element will be incorporated into the network equations for
the EWCM.

© ASCE 04025054-3 J. Water Resour. Plann. Manage.
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Graph-Theoretical Formulation of WDS

For a WDS that includes dynamic elements, the state variables in-
clude the hydraulic head at each node (excluding reservoirs), the
flow rate in pipes and dynamic elements, and the state variables for
the dynamic elements [such as the opening of a PRV, xm, and pump
speed, s, denoted as z in Eq. (15)]. These variables are unknowns,
and by determining these variables, the entire state of the system
can be identified.

In this paper, PRVs and pumps are considered two-port ele-
ments, and the whole system can be represented as a graph of pipes
and dynamic elements. Based on graph theory, a graph can be rep-
resented by an incidence matrix A, which has a row for each node
and a column for each element. The entries of the matrix are either
1, −1, or 0, depending on the relationship between the nodes and
edges (for WDS, edges are pipes, PRVs, and pumps). A value of 1
at Ai;j indicates that the edge j leaves node i, a value −1 indicates
that the edge j enters node i, and value of 0 shows there is no con-
nection between node i and edge j. By having two different types
of nodes (internal nodes and reservoir nodes) and two different
types of edges (pipes and dynamic elements), the incidence matrix
can be divided into different sections as follows:

A ¼
"
AI

AR

#
; AI ¼ ½AIpjAIe�; AR ¼ ½ARpjARe� ð18Þ

where the subscript I = rows associated with internal nodes;
R = rows for reservoir nodes; and p and e = pipes and dynamic
elements, respectively. Similarly, the vector of nodal heads can be
partitioned as follows:

h ¼
"
hI

hR

#
ð19Þ

where hI = heads at internal nodes; and hR = heads at reservoir
nodes. Likewise, the vector of link flows can be partitioned as
follows:

q ¼
"
qp

qe

#
ð20Þ

where qp = flows through pipes; and qe = flows through dynamic
elements.

Based on these partitions, the vector of head differences Δh
over each flow element can be written as follows:

Δh ¼ Ah ¼
"
AI

AR

#
T
"
hI

hR

#
¼

"
AT
Ip AT

Rp

AT
Ie AT

Re

#"
hI

hR

#
ð21Þ

In this vector, the pressure differences over pipes and dynamic
elements have been derived based on the incidence matrix and the
vector of nodal pressure heads. Similar to Zeng et al. (2022), the
demand vector Q and parameter matrices L, R, C, and T, all of
which are diagonal, are utilized in deriving the momentum and con-
tinuity equations for pipes. The momentum equation is thereby for-
mulated as follows:

L
dqp
dt

¼ −Rdiagfjqpjgqp þ AT
IphI þ AT

RphR ð22Þ

where jxj is the elementwise vector (or matrix) of x, and the con-
tinuity equation at nodes can be expressed�

1

2
jAIjCþ T

�
dhI
dt

¼ AIq − Q ð23Þ

From Eq. (16), the equations for the dynamic elements can be
written

Fig. 1. Electrical equivalent circuits for water distribution system components: (a) pipeline configuration featuring two pipes connected by a PRV;
and (b) similar pipeline configuration with two pipes and a pump situated in the middle.
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dz
dt

¼ diagfagðue − zÞ
AT
IehI þ AT

RehR − Feðz; qeÞ ¼ 0 ð24Þ

where z, a, and ue are a vector organization of the states, system
coefficients, and control signals for the dynamic elements, respec-
tively; and Feðz; qeÞ = vectorized head change equation for the
dynamic elements with states z and element flows qe.

Eqs. (20)–(23), along with Eqs. (11) and (14), form a set of dif-
ferential algebraic equations (DAEs) for a WDS. In this set of equa-
tions, the state vector x can be defined as follows:

x ¼

2
66664
qp
qe
hI
z

3
77775 ð25Þ

and the system inputs are defined

u ¼

2
664
hR
Q

ue

3
775 ð26Þ

By applying this state vector to the equations, the nonlinear set
of equation can be written as follows:

Eẋ ¼ fðx; uÞ ð27Þ
where E is a diagonal matrix. Explicitly, this can be given as
follows:2
66664
I 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I

3
77775
d
dt

2
66664
qp

qe

hI

z

3
77775 ¼

2
66664

0 0 AT
Ip 0

0 0 AT
Ie 0

GAIp GAIe 0 0

0 0 0 −D

3
77775

2
66664
qp

qe

hI

z

3
77775

−

2
66664

FpðqpÞ
Feðz; qeÞ

0

0

3
77775þ

2
666664
AT
Rp 0 0

AT
Re 0 0

0 −G 0

0 0 D

3
777775

×

2
664
hR

Q

ue

3
775 ð28Þ

where

D ¼ diagfagG ¼
�
1

2
jAI jCþ T

�−1
FpðqpÞ ¼ L−1Rdiagfjqpjgqp

This set of equations is in a nonlinear state-space format and can
be integrated using various numerical integration techniques, such
as ode15s or ode23t in MATLAB version R2023a, which are suit-
able for DAEs. The matrixG contains the capacitance terms, which
are directly related to the compressibility of water and its ability to
store energy during transient events. The function FpðqpÞ accounts
for nonlinear damping effects, influencing how transient waves
dissipate over time due to friction. The matrix D contains the time
constant values for PRVs and pumps, which dictate the dynamic re-
sponse of these elements within the system. An important advantage

of this state-space representation is its ability to facilitate various
control analyses, including stability, observability, and modal analy-
sis of WDS. To enhance the accuracy of EWCM pipes, they can be
discretized into multiple elements. Discretization alters the structure
of matrices, such as AI, and affects the size of other vectors. A
detailed explanation of how to discretize each pipe and create a new
system of equations from Eq. (28) has been provided by Zeng
et al. (2022).

Numerical Simulation

In this section, the EWCM was first verified against the MOC and
RWCM under slow transient conditions, demonstrating that the
EWCM accurately replicates system behavior in these scenarios.
Subsequently, two fast transient tests were conducted to further
evaluate the EWCM’s performance. The results highlight that,
even under faster transient conditions, the EWCM maintained ac-
curacy, particularly when the number of reaches was appropriately
increased.

Case Study 1: Numerical Verification

The objective of this verification study was to validate the EWCM
with dynamic elements using an established test case from Prescott
and Ulanicki (2003), demonstrated in Fig. 2(a). Additionally, the
test case was also simulated using RWCM and MOC for compari-
son. The spatial step for the MOC simulation has been chosen to be
0.1 m for each pipe. The setup includes two valves located at the
upstream and downstream ends of a PRV. Two transient events
were simulated:
• Increasing the set point of the PRV: Between 18 and 20 s, the set

point of the PRV was altered from 32.6 to 36.6 m.
• Partial closure of upstream valve: Between 64 and 66 s, the

upstream valve opening was adjusted, and the minor loss coef-
ficient (Kv) was changed from 46 to 83.
The results obtained from the EWCM, RWCM, and MOC were

compared as illustrated in Fig. 3. The comparison shows that an
increase in the PRV set point caused the valve to open further,
maintaining a constant downstream head and increasing flow. This
flow stabilized in approximately 15 s, with the duration depend-
ing on the α parameter. When the upstream valve was closed, the
flow decreased, causing a drop in pressure both upstream and
downstream of the PRV. To compensate, the PRV opened more
significantly, restoring the flow. Eventually, the flow returned to its
original level as the pressure drop across the upstream valve was
balanced by a decrease in the pressure drop across the PRV.

The comparison between the models shows that the EWCM
and RWCM performed similarly to the MOC in slow transient sce-
narios. Therefore, it can be concluded that for slow transients, all
models exhibited comparable performance. However, further com-
parisons under fast transient conditions are necessary to fully assess
the models’ effectiveness.

Case Study 2: Fast Transient Comparison

In order to clearly discern the differences between these models,
two fast transient scenarios were simulated. This was achieved
by using a configuration similar to the previous section, but with
altered pipe lengths, diameters, and modified PRV parameters.
Increasing the length and diameter of the pipes makes water com-
pressibility more significant. Consequently, a valve closure time of
less than 4 s constitutes a fast transient in this new configuration,
making the distinctions between these models more apparent. The
new parameters for the setup are shown in Fig. 3(b). The spatial
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step for the MOC simulation has been chosen to be 10 m for
each pipe.

In this test, the upstream valve closure was altered from Kv ¼
50 to 400 in two different scenarios. In Scenario 1, the valve closure
duration was 2 s, whereas in Scenario 2, the valve closure duration
was 1 s. The Kv increased during these two scenarios with a cosine
pattern.

First, the simulation results for Scenario 1 will be presented.
Fig. 4 displays the flow through the PRV. Like the slow transient
scenario, the flow reached the same level after the transient event.
The MOC was considered the baseline for accuracy, and the other
models were compared against it. To assess the similarity of these
models to the MOC results, the normalized root-mean square
deviation (NRMSD) was calculated as follows and is reported for
each model in the figure:

NRMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

N
i¼1ðx̂i − xiÞ=N

p
ðxmax − xminÞ

× 100 ð29Þ

where x̂i = results obtained from the MOC; and xi = results from
the other models. It was observed that increasing the number of
elements, particularly for the two longest pipes, enhanced the ac-
curacy of the EWCM.

Figs. 5(a and b) illustrate the pressure variations upstream and
downstream of the PRV for Scenario 1. The number of reaches in
Fig. 6 represents the number of segments for Pipes 2 and 3. These
figures reveal that the NRMSE was higher for the RWCM and sug-
gest that this error can be reduced by increasing the number of
reaches in the EWCM for pipes. To emphasize the differences be-
tween these models, the pressure results immediately after the
PRV are zoomed in and depicted in Fig. 5(b). In the RWCM, the
primary assumption was that of an infinite wave speed. Due to this
assumption, an immediate pressure change was observed following
the closure of the upstream valve, which is not realistic. In contrast,
the MOC indicates a 2-s delay for the wave to reach the PRV, which
aligns with the expected time duration for a wave to travel that
distance (given a 2,000 m length for Pipe 2 and a wave speed
of 1,000 m=s).

The EWCM could capture this delay even with only one ele-
ment per pipe, and its accuracy improved with an increased number
of elements. The error in the delay duration doubled for the second
wave, and this trend continued for subsequent waves if only one
element was used. Moreover, the wave shape became more closely

aligned with the actual scenario when the EWCM had more ele-
ments. The MOC depicted a sharp wave for this transient event,
and the EWCM with 10 elements could capture these wave shapes,
demonstrating its effectiveness in simulating fast transient events.
Zeng et al. (2022) showed that if the bandwidth of the transient
generated at the boundary conditions is lower than the critical fre-
quency (fc ¼ a=10l), the EWCM matched the accuracy of the
MOC. However, discrepancies increased when the system was
excited with higher frequency bandwidths. The critical frequency
and the excitation frequency bandwidth can be used to determine
the number of elements for each pipe when high accuracy is re-
quired. However, as shown in Fig. 6, the EWCM, even with a single
element still performed better than the RWCM.

Fig. 6 represents the PRV’s opening as a percentage over
time. The influence of the hydraulic controller of the PRV, im-
plicit in the α parameters, moderated the rate of PRV opening
changes, resulting in remarkably similar outcomes across the
three models. However, an exception was observed in the RWCM,
where the anticipated delay at the onset of the opening change
was absent.

Next, by simulating Scenario 2 with a faster valve closure, Fig. 7
illustrates the pressure variations upstream and downstream of the
PRV, along with the NRMSE reported in the figure. In this scenario,
the valve closure was faster, and the NRMSE of the EWCM in-
creased compared with Scenario 1. Although this transient is fast,
the EWCM with only 10 reaches still showed relatively small error.
As seen from the comparison of the two scenarios, as the transient
became faster, the number of reaches had to be increased to main-
tain a fixed amount of error.

Numerical Considerations

In this section, two key numerical aspects of the EWCM were in-
vestigated. First, the stiffness of the ODE-based models, EWCM
and RWCM, was measured and compared. Second, the sparsity of
the EWCM was examined in relation to its effect on computational
efficiency because it reduces matrix operation complexity, particu-
larly in large-scale water distribution systems.

Stiffness

In this section, the focus is on comparing the inherent stiffness of
the EWCM and RWCM, both of which are ODE-based method.

Fig. 2. Pipeline configuration for (a) slow transient analysis, based on experimental setup by Prescott and Ulanicki (2003); and (b) fast transient
analysis (Case studies 2 and 3).
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Stiffness refers to the presence of rapidly varying solution compo-
nents alongside slowly varying ones, which can significantly affect
the stability and accuracy of numerical integration. In the context of
ODE-based methods for transient analysis, stiffness arises due to
the wide range of time scales associated with wave propagation in
the system (Hairer and Wanner 1996). Stiffness can significantly
affect the stability and accuracy of the numerical integration pro-
cess. The stiffness is quantified by the ratio of the largest to the
smallest eigenvalue of the system, derived from the Jacobian matrix
of each model.

Case Study 1: Pipe Network
The EWCM defines the system state by considering both the head
at the nodes and the flow in the pipes, whereas the RWCM, follow-
ing Shimada (1992), considers only the independent pipe flows
as the system state. This results in differing structures for their
Jacobian matrices, with the EWCM’s matrix being notably simpler
to compute, as detailed in the Appendix I. The Jacobian matrix can
also be determined using the Simulink environment in MATLAB.
In this approach, the equations are first converted into a Simulink
model, and then the ‘linearize’ function or theModel Linearizer App

Fig. 3. Simulation results fromMOC, EWCM, and RWCM: (a) flow through the PRV; (b) upstream and downstream head of the PRV; and (c) opening
of the PRV.
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Fig. 4. Flow through the PRV for fast transient event (Scenario 1).

Fig. 5. Simulation results from MOC, EWCM with 1, 5, and 10 elements, and RWCM for Scenario 1: (a) pressure head upstream of the PRV; and
(b) pressure head downstream of the PRV.
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Fig. 6. Opening of the PRV.

Fig. 7. Simulation results from MOC, EWCM with 1, 5, and 10 elements and RWCM for scenario 2: (a) upstream pressure head at the PRV; and
(b) downstream pressure head at the PRV.
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in Simulink is used to derive a linear state space model of the sys-
tem around an operating point. MATLAB calculates the Jacobian
of the system by numerically perturbing the variables and meas-
uring the slope of the changes. Both of these methods have been
used for finding the Jacobian matrix in this section.

To examine the intrinsic characteristics of these models, a
51-pipe network was analyzed, as detailed in Fig. 8. In this
network, the only components are pipes, making the system of
equations solely ODEs. This setup is appropriate for comparing
the stiffness of the EWCM and RWCM. This specific network
configuration has previously been utilized for the study of hy-
draulic transients by Vítkovský (2001) and Zecchin (2010). It was
presumed that the wave speed across all pipes was 1,000 m=s.
Although this paper does not elaborate on the network’s intricate
details due to space constraints, it encompasses a variety of network
parameters, including pipe lengths ranging from 450 to 994 m,
diameters from 304.8 to 1,524 mm, and nodal demands up to
0.280 L=s. Further details on the case study have been given by
Zecchin (2010).

A transient event was simulated, involving a reduction in
demand at each node by half over a 10-s period from 10 to 20 s.

The stiffness metrics for the EWCM and RWCM over time are pre-
sented in Figs. 9 and 10.

The results indicate higher stiffness in the EWCM. Although
stiffness allows the model to capture a wider range of frequencies,
it also introduces numerical challenges. Stiff systems require solv-
ers capable of handling rapidly changing dynamics to maintain
stability and accuracy. In MATLAB, explicit solvers like ode45,
which use Runge–Kutta methods, may struggle with stiff systems
and lead to numerical instability or excessive computation time.
Instead, solvers designed for stiff problems, such as ode15s, may
be more appropriate, depending on the severity of the stiffness.
If a simulation encounters instability or crashes, switching to a stiff
solver is necessary to ensure reliable results. Although this com-
plexity increases the computational effort and solver selection be-
comes more critical, it allows for a more accurate representation of
system dynamics.

Case Study 2: Pipe Network with PRV
To extend the analysis and comparison of the stiffness of the
EWCM and RWCM for systems having PRVs, Case study 2
from the “Numerical Simulation” section has been used. The same

Fig. 8. Pipe network featuring three reservoirs, comprising 51 edges and 32 internal nodes, as detailed by Zecchin (2010).

Fig. 9. Stiffness of EWCM.
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transient event was utilized, and the stiffness for both models was
calculated using Simulink software. The results are shown in
Fig. 11. Because a PRV is present in the pipeline, the system of
equations would be DAEs. As can be seen, the EWCM was
even stiffer than the RWCM in Case study 2, which includes a
PRV, compared with Case study 1 where the system comprised
only pipes.

Sparsity

Building upon the findings from the previous sections, it is evident
that the EWCM handles fast transient events in WDS with im-
proved accuracy when more elements are used per pipe. A closer
examination of its matrix formulation reveals that key matrices,
such as AI and AR, are sparse, particularly for large systems.
Sparsity in this context means that the matrices contain a high
proportion of zero values, reducing the memory footprint and com-
putational overhead (da Silva Lessa et al. 2020). These matrices
can be converted into sparse matrices with prebuilt function like
sparse in MATLAB for simulations. Using sparse matrices reduces
memory usage and computational time, as demonstrated in the 51-
pipe network simulation over 400 s with varying elements per pipe.
Fig. 12 illustrates the computation time, and Fig. 13 depicts the
memory usage for both regular and sparse matrix implementations.

As the number of elements increased, computation time and
memory usage rose exponentially. However, using sparse matrices
mitigated this increase, which can be beneficial for large-scale sys-
tems. The extent of this improvement may vary depending on the
specific case, as computational efficiency is influenced by factors
such as network configuration, solver selection, and hardware
specifications. Nevertheless, the results indicate that implementing
EWCM with a sparse matrix structure generally led to improved
efficiency. By running the same test case with the same time step
and a spatial step of 10 m for each pipe, the MOC simulation
took 288 s, which is higher than both RWCM (1.5 s) and EWCM.
In contrast to the MOC, which is computationally demanding, the
EWCM offers reasonable accuracy for fast transient events in large-
scale networks within a reduced time frame. This efficiency makes
the EWCM particularly advantageous for optimization and control
applications in WDS.

Conclusion

This study introduced the integration of dynamic elements into
the EWCM through electrical equivalent circuits for PRVs and
pumps, benchmarking its effectiveness against existing results.
It compares the EWCM with the RWCM and MOC across slow

Fig. 10. Stiffness of RWCM.

Fig. 11. Stiffness of RWCM for Case study 2.
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and fast transient events in water distribution systems. The results
showed that the EWCM performs comparably to other models dur-
ing slow transient scenarios and provides a useful approximation
during fast transient events.

Comparative analysis suggested that the EWCM can achieve
accuracy comparable to the MOC in fast transient scenarios. Fur-
thermore, this accuracy can be enhanced by increasing the level of
discretization, albeit at some cost to the required computational
time. This flexibility allows for a tailored balance between accuracy
and computational efficiency, a feature not available with the
RWCM. Thus, the EWCM offers a unique advantage in water
distribution system analysis by allowing users to adjust its perfor-
mance according to their specific needs for accuracy and computa-
tional resources.

The EWCMwas also identified as being stiffer than the RWCM.
Although this stiffness allows for representing dynamic events
across a broad frequency range, it also increases complexity in
numerical integration. The study highlighted the role of sparse
matrices within the EWCM, which can improve computational
efficiency in large-scale networks by reducing computation time
and memory usage. The combination of stiffness and sparsity pro-
vides a framework for analyzing large networks, which may be use-
ful in optimization and control strategies within WDS, depending
on the specific requirements of an application.

Appendix I. Jacobian Matrix for EWCM

For a WDS lacking dynamic components, the EWCM system of
equations is outlined as follows:

8>><
>>:

dq
dt
dhI
dt

9>>=
>>; ¼

8><
>:

L−1ð−Rdiagfjqjgqþ AT
I hI þ AT

RhRÞ�
diag

�
1

2
jAIjCþ T

��−1
ðAIq −QIÞ

9>=
>; ð30Þ

In this system, the state variables are q and hI . By taking the
derivative, the structure of the Jacobian matrix can be obtained. The
size of this matrix is 83 × 83 (83 ¼ 51 edgesþ 32 internal nodes)
for a 51-pipe network. In this structure, the bottom-right portion
of the matrix consists entirely of zeros, and the top-left portion is
diagonal. The top-right and bottom-left portions contain nonzero
elements depending on the network’s structure. However, in a large
network, most elements in these two parts are also zero.

Appendix II. Jacobian Matrix for RWCM

In the RWCM, the model utilizes fewer state variables compared
with the EWCM. Specifically, the state variables in RWCM are
confined to the independent flow variables. For instance, in a net-
work consisting of 51 pipes, there are only 19 independent flows,
which can be obtained from the calculation of 51 edges minus 32
internal nodes. This reduction in state variables complicates the
process of deriving the Jacobian matrix from the momentum equa-
tion because the limited and interconnected state variables pose
challenges.

The fundamental equations for RWCM, which assume infinite
wave speed (a key assumption of this method), are outlined as
follows:

L
dq
dt

¼ −Rjqjqþ AT
I hI þ AT

RhR ð31Þ

AIq ¼ −QI ð32Þ

Derivation begins by differentiating Eq. (32) and substituting
Eq (31) into it, yielding the following expression for hI :

hI ¼ K−1
�
−QIðtÞ

dt
− AIL−1½−Rqjqj þ AT

RhR�
�

ð33Þ

where K ¼ AIL−1AT
I . Subsequently, when hI is substituted back

into Eq. (31), the following expression is derived:

Fig. 12. Computation time.

Fig. 13. Memory usage.
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∂q
∂t ¼ L−1f−Rqjqj þ AT

I K
−1AIL−1Rqjqjg

þ L−1AT
I

�
ðKÞ−1

�
−QIðtÞ

dt

��

þ L−1f−AT
I K

−1AIL−1AT
RhR þ AT

RhRg ð34Þ

By defining W ¼ L−1ðI − AT
I K

−1AIL−1Þ and incorporating the
permutation matrix P, which is used to order the state variables
based on independent and dependent flows, the following refined
equation is obtained:

P
dq
dt

¼ PWP−1P½−Rqjqj þ AT
RhR� þ PL−1AT

I K
−1 dQI

dt
ð35Þ

The first ni rows of this equation set form a set of ODEs for
RWCM, from which qi (the independent flow rates) can be deter-
mined. Through Eq. (35), the matrix expression is simplified, and
Eq. (25) details the dynamic of qi

PWP−1 ¼
�
Wi

Wd

�
ð36Þ

dqi
dt

¼ WiP½−Rqjqj þ AT
RhR� þ PL−1AT

I R
−1 dQI

dt
ð37Þ

On the other hand, the flow vector q is divided into qi and qd
(dependent flow rates), with qd being expressed as a function of qi
as per Shimada (1992) as follows:

qd ¼ −A−1
Id ðAIiqi þ QIÞ ð38Þ

Two additional matrices, ET
i1 and E

T
i2, are defined for the decom-

position of Wi as follows:

ET
i1 ¼ ½ Ini 0ni×nD � ð39Þ

ET
i2 ¼ ½ 0nD×ni InD � ð40Þ

where nD = number of dependent pipes; and ni = number of inde-
pendent pipes. By applying Eqs. (39) and (40), on the first term
of the right-hand side of Eq. (37), the following relationship is
established

WiP½−Rqjqj� ¼ Wi1ð−RjqijÞqi þWi1ð−RjqdjÞqd ð41Þ

Wi1 ¼ WiET
i1

Wi2 ¼ WiET
i2 ð42Þ

Eq. (38) is substituted into Eq. (41), resulting in

WiP½−Rqjqj� ¼ Wi1ð−RjqijÞqi
þWi2ð−RjqdjÞð−A−1

Id ðAIiqi þ QIÞÞ ð43Þ

With Eq. (43) substituted into Eq. (37) and upon taking the
derivative, the Jacobian matrix is derived as follows:

J ¼ −2Wi1diagðRijqijÞ
− 2Wi2diagðRdj − A−1

Id ðAIiqi þ QIÞjÞð−A−1
Id ðAIiÞÞ ð44Þ
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